Hopp til hovedinnhold
Faktoriser
Tick mark Image
Evaluer
Tick mark Image
Graf

Lignende problemer fra nettsøk

Aksje

25\left(x^{2}+x-6\right)
Faktoriser ut 25.
a+b=1 ab=1\left(-6\right)=-6
Vurder x^{2}+x-6. Faktor iser uttrykket ved å gruppere. Først må uttrykket omskrives som x^{2}+ax+bx-6. Hvis du vil finne a og b, setter du opp et system som skal løses.
-1,6 -2,3
Siden ab er negativ, a og b har motsatt tegn. Siden a+b er positiv, har det positive tallet større absolutt verdi enn det negative. Vis alle slike hel talls par som gir produkt -6.
-1+6=5 -2+3=1
Beregn summen for hvert par.
a=-2 b=3
Løsningen er paret som gir Summer 1.
\left(x^{2}-2x\right)+\left(3x-6\right)
Skriv om x^{2}+x-6 som \left(x^{2}-2x\right)+\left(3x-6\right).
x\left(x-2\right)+3\left(x-2\right)
Faktor ut x i den første og 3 i den andre gruppen.
\left(x-2\right)\left(x+3\right)
Faktorer ut det felles leddet x-2 ved å bruke den distributive lov.
25\left(x-2\right)\left(x+3\right)
Skriv om det fullførte faktoriserte uttrykket.
25x^{2}+25x-150=0
Kvadratisk ligning for polynom kan faktoriseres ved hjelp av transformasjonen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), der x_{1} og x_{2} er løsningene for den kvadratiske ligningen ax^{2}+bx+c=0.
x=\frac{-25±\sqrt{25^{2}-4\times 25\left(-150\right)}}{2\times 25}
Alle formler for skjemaet ax^{2}+bx+c=0 kan løses ved hjelp av den kvadratiske formelen: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formelen gir to løsninger, én når ± er addisjon og en når det er subtraksjon.
x=\frac{-25±\sqrt{625-4\times 25\left(-150\right)}}{2\times 25}
Kvadrer 25.
x=\frac{-25±\sqrt{625-100\left(-150\right)}}{2\times 25}
Multipliser -4 ganger 25.
x=\frac{-25±\sqrt{625+15000}}{2\times 25}
Multipliser -100 ganger -150.
x=\frac{-25±\sqrt{15625}}{2\times 25}
Legg sammen 625 og 15000.
x=\frac{-25±125}{2\times 25}
Ta kvadratroten av 15625.
x=\frac{-25±125}{50}
Multipliser 2 ganger 25.
x=\frac{100}{50}
Nå kan du løse formelen x=\frac{-25±125}{50} når ± er pluss. Legg sammen -25 og 125.
x=2
Del 100 på 50.
x=-\frac{150}{50}
Nå kan du løse formelen x=\frac{-25±125}{50} når ± er minus. Trekk fra 125 fra -25.
x=-3
Del -150 på 50.
25x^{2}+25x-150=25\left(x-2\right)\left(x-\left(-3\right)\right)
Faktoriser det opprinnelige uttrykket ved hjelp av ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Erstatt 2 med x_{1} og -3 med x_{2}.
25x^{2}+25x-150=25\left(x-2\right)\left(x+3\right)
Forenkle alle uttrykkene i formelen fra p-\left(-q\right)til p+q.