Løs for x (complex solution)
x=-\frac{\sqrt{39}i}{5}\approx -0-1,2489996i
x=\frac{\sqrt{39}i}{5}\approx 1,2489996i
Graf
Aksje
Kopiert til utklippstavle
25x^{2}+39=0
Legg sammen 30 og 9 for å få 39.
25x^{2}=-39
Trekk fra 39 fra begge sider. Hvilket som helst tall trukket fra null gir sin negasjon.
x^{2}=-\frac{39}{25}
Del begge sidene på 25.
x=\frac{\sqrt{39}i}{5} x=-\frac{\sqrt{39}i}{5}
Ligningen er nå løst.
25x^{2}+39=0
Legg sammen 30 og 9 for å få 39.
x=\frac{0±\sqrt{0^{2}-4\times 25\times 39}}{2\times 25}
Denne ligningen er i standard form: ax^{2}+bx+c=0. Sett inn 25 for a, 0 for b og 39 for c i andregradsformelen, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 25\times 39}}{2\times 25}
Kvadrer 0.
x=\frac{0±\sqrt{-100\times 39}}{2\times 25}
Multipliser -4 ganger 25.
x=\frac{0±\sqrt{-3900}}{2\times 25}
Multipliser -100 ganger 39.
x=\frac{0±10\sqrt{39}i}{2\times 25}
Ta kvadratroten av -3900.
x=\frac{0±10\sqrt{39}i}{50}
Multipliser 2 ganger 25.
x=\frac{\sqrt{39}i}{5}
Nå kan du løse formelen x=\frac{0±10\sqrt{39}i}{50} når ± er pluss.
x=-\frac{\sqrt{39}i}{5}
Nå kan du løse formelen x=\frac{0±10\sqrt{39}i}{50} når ± er minus.
x=\frac{\sqrt{39}i}{5} x=-\frac{\sqrt{39}i}{5}
Ligningen er nå løst.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}