Løs for x
x=\frac{\left(-25^{y}+\frac{1}{y}\right)^{2}}{10000}
\left(\frac{|1-y\times 25^{y}|}{|y|}\leq 0\text{ or }-\frac{25^{y}}{100}+\frac{1}{100y}\leq 0\right)\text{ and }y\neq 0
Løs for x (complex solution)
x=\frac{\left(-25^{y}+\frac{1}{y}\right)^{2}}{10000}
\left(y\neq 0\text{ and }1-y\times 25^{y}=0\text{ and }\frac{1-y\times 25^{y}}{100}=0\right)\text{ or }\left(y\neq 0\text{ and }arg(-\frac{25^{y}}{100}+\frac{1}{100y})\geq \pi \text{ and }\frac{1-y\times 25^{y}}{100}\neq 0\right)
Graf
Aksje
Kopiert til utklippstavle
y\times 25^{y}=100\sqrt{x}y+1
Multipliser begge sider av ligningen med y.
100\sqrt{x}y+1=y\times 25^{y}
Bytt om sidene, slik at alle variabelledd er på venstre side.
100\sqrt{x}y=y\times 25^{y}-1
Trekk fra 1 fra begge sider.
\frac{100y\sqrt{x}}{100y}=\frac{y\times 25^{y}-1}{100y}
Del begge sidene på 100y.
\sqrt{x}=\frac{y\times 25^{y}-1}{100y}
Hvis du deler på 100y, gjør du om gangingen med 100y.
x=\frac{\left(y\times 25^{y}-1\right)^{2}}{10000y^{2}}
Kvadrer begge sider av ligningen.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}