Hopp til hovedinnhold
Faktoriser
Tick mark Image
Evaluer
Tick mark Image

Lignende problemer fra nettsøk

Aksje

2\left(z^{2}+z-30\right)
Faktoriser ut 2.
a+b=1 ab=1\left(-30\right)=-30
Vurder z^{2}+z-30. Faktor iser uttrykket ved å gruppere. Først må uttrykket omskrives som z^{2}+az+bz-30. Hvis du vil finne a og b, setter du opp et system som skal løses.
-1,30 -2,15 -3,10 -5,6
Siden ab er negativ, a og b har motsatt tegn. Siden a+b er positiv, har det positive tallet større absolutt verdi enn det negative. Vis alle slike hel talls par som gir produkt -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Beregn summen for hvert par.
a=-5 b=6
Løsningen er paret som gir Summer 1.
\left(z^{2}-5z\right)+\left(6z-30\right)
Skriv om z^{2}+z-30 som \left(z^{2}-5z\right)+\left(6z-30\right).
z\left(z-5\right)+6\left(z-5\right)
Faktor ut z i den første og 6 i den andre gruppen.
\left(z-5\right)\left(z+6\right)
Faktorer ut det felles leddet z-5 ved å bruke den distributive lov.
2\left(z-5\right)\left(z+6\right)
Skriv om det fullførte faktoriserte uttrykket.
2z^{2}+2z-60=0
Kvadratisk ligning for polynom kan faktoriseres ved hjelp av transformasjonen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), der x_{1} og x_{2} er løsningene for den kvadratiske ligningen ax^{2}+bx+c=0.
z=\frac{-2±\sqrt{2^{2}-4\times 2\left(-60\right)}}{2\times 2}
Alle formler for skjemaet ax^{2}+bx+c=0 kan løses ved hjelp av den kvadratiske formelen: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formelen gir to løsninger, én når ± er addisjon og en når det er subtraksjon.
z=\frac{-2±\sqrt{4-4\times 2\left(-60\right)}}{2\times 2}
Kvadrer 2.
z=\frac{-2±\sqrt{4-8\left(-60\right)}}{2\times 2}
Multipliser -4 ganger 2.
z=\frac{-2±\sqrt{4+480}}{2\times 2}
Multipliser -8 ganger -60.
z=\frac{-2±\sqrt{484}}{2\times 2}
Legg sammen 4 og 480.
z=\frac{-2±22}{2\times 2}
Ta kvadratroten av 484.
z=\frac{-2±22}{4}
Multipliser 2 ganger 2.
z=\frac{20}{4}
Nå kan du løse formelen z=\frac{-2±22}{4} når ± er pluss. Legg sammen -2 og 22.
z=5
Del 20 på 4.
z=-\frac{24}{4}
Nå kan du løse formelen z=\frac{-2±22}{4} når ± er minus. Trekk fra 22 fra -2.
z=-6
Del -24 på 4.
2z^{2}+2z-60=2\left(z-5\right)\left(z-\left(-6\right)\right)
Faktoriser det opprinnelige uttrykket ved hjelp av ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Erstatt 5 med x_{1} og -6 med x_{2}.
2z^{2}+2z-60=2\left(z-5\right)\left(z+6\right)
Forenkle alle uttrykkene i formelen fra p-\left(-q\right)til p+q.