Evaluer
-10xy
Utvid
-10xy
Aksje
Kopiert til utklippstavle
2\left(y^{2}-6yx+9x^{2}\right)+2\left(y+2x\right)\left(y-2x\right)-9x^{2}-2xy-\left(2y-x\right)^{2}
Bruk binomialformelen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til å utvide \left(y-3x\right)^{2}.
2y^{2}-12yx+18x^{2}+2\left(y+2x\right)\left(y-2x\right)-9x^{2}-2xy-\left(2y-x\right)^{2}
Bruk den distributive lov til å multiplisere 2 med y^{2}-6yx+9x^{2}.
2y^{2}-12yx+18x^{2}+\left(2y+4x\right)\left(y-2x\right)-9x^{2}-2xy-\left(2y-x\right)^{2}
Bruk den distributive lov til å multiplisere 2 med y+2x.
2y^{2}-12yx+18x^{2}+2y^{2}-8x^{2}-9x^{2}-2xy-\left(2y-x\right)^{2}
Bruk den distributive lov til å multiplisere 2y+4x med y-2x og kombinere like ledd.
4y^{2}-12yx+18x^{2}-8x^{2}-9x^{2}-2xy-\left(2y-x\right)^{2}
Kombiner 2y^{2} og 2y^{2} for å få 4y^{2}.
4y^{2}-12yx+10x^{2}-9x^{2}-2xy-\left(2y-x\right)^{2}
Kombiner 18x^{2} og -8x^{2} for å få 10x^{2}.
4y^{2}-12yx+x^{2}-2xy-\left(2y-x\right)^{2}
Kombiner 10x^{2} og -9x^{2} for å få x^{2}.
4y^{2}-14yx+x^{2}-\left(2y-x\right)^{2}
Kombiner -12yx og -2xy for å få -14yx.
4y^{2}-14yx+x^{2}-\left(4y^{2}-4yx+x^{2}\right)
Bruk binomialformelen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til å utvide \left(2y-x\right)^{2}.
4y^{2}-14yx+x^{2}-4y^{2}+4yx-x^{2}
Du finner den motsatte av 4y^{2}-4yx+x^{2} ved å finne den motsatte av hvert ledd.
-14yx+x^{2}+4yx-x^{2}
Kombiner 4y^{2} og -4y^{2} for å få 0.
-10yx+x^{2}-x^{2}
Kombiner -14yx og 4yx for å få -10yx.
-10yx
Kombiner x^{2} og -x^{2} for å få 0.
2\left(y^{2}-6yx+9x^{2}\right)+2\left(y+2x\right)\left(y-2x\right)-9x^{2}-2xy-\left(2y-x\right)^{2}
Bruk binomialformelen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til å utvide \left(y-3x\right)^{2}.
2y^{2}-12yx+18x^{2}+2\left(y+2x\right)\left(y-2x\right)-9x^{2}-2xy-\left(2y-x\right)^{2}
Bruk den distributive lov til å multiplisere 2 med y^{2}-6yx+9x^{2}.
2y^{2}-12yx+18x^{2}+\left(2y+4x\right)\left(y-2x\right)-9x^{2}-2xy-\left(2y-x\right)^{2}
Bruk den distributive lov til å multiplisere 2 med y+2x.
2y^{2}-12yx+18x^{2}+2y^{2}-8x^{2}-9x^{2}-2xy-\left(2y-x\right)^{2}
Bruk den distributive lov til å multiplisere 2y+4x med y-2x og kombinere like ledd.
4y^{2}-12yx+18x^{2}-8x^{2}-9x^{2}-2xy-\left(2y-x\right)^{2}
Kombiner 2y^{2} og 2y^{2} for å få 4y^{2}.
4y^{2}-12yx+10x^{2}-9x^{2}-2xy-\left(2y-x\right)^{2}
Kombiner 18x^{2} og -8x^{2} for å få 10x^{2}.
4y^{2}-12yx+x^{2}-2xy-\left(2y-x\right)^{2}
Kombiner 10x^{2} og -9x^{2} for å få x^{2}.
4y^{2}-14yx+x^{2}-\left(2y-x\right)^{2}
Kombiner -12yx og -2xy for å få -14yx.
4y^{2}-14yx+x^{2}-\left(4y^{2}-4yx+x^{2}\right)
Bruk binomialformelen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til å utvide \left(2y-x\right)^{2}.
4y^{2}-14yx+x^{2}-4y^{2}+4yx-x^{2}
Du finner den motsatte av 4y^{2}-4yx+x^{2} ved å finne den motsatte av hvert ledd.
-14yx+x^{2}+4yx-x^{2}
Kombiner 4y^{2} og -4y^{2} for å få 0.
-10yx+x^{2}-x^{2}
Kombiner -14yx og 4yx for å få -10yx.
-10yx
Kombiner x^{2} og -x^{2} for å få 0.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}