Løs for a
a = \frac{9}{4} = 2\frac{1}{4} = 2,25
a = \frac{15}{4} = 3\frac{3}{4} = 3,75
Aksje
Kopiert til utklippstavle
\frac{16\left(-a+3\right)^{2}}{16}=\frac{9}{16}
Del begge sidene på 16.
\left(-a+3\right)^{2}=\frac{9}{16}
Hvis du deler på 16, gjør du om gangingen med 16.
-a+3=\frac{3}{4} -a+3=-\frac{3}{4}
Ta kvadratroten av begge sider av ligningen.
-a+3-3=\frac{3}{4}-3 -a+3-3=-\frac{3}{4}-3
Trekk fra 3 fra begge sider av ligningen.
-a=\frac{3}{4}-3 -a=-\frac{3}{4}-3
Når du trekker fra 3 fra seg selv har du 0 igjen.
-a=-\frac{9}{4}
Trekk fra 3 fra \frac{3}{4}.
-a=-\frac{15}{4}
Trekk fra 3 fra -\frac{3}{4}.
\frac{-a}{-1}=-\frac{\frac{9}{4}}{-1} \frac{-a}{-1}=-\frac{\frac{15}{4}}{-1}
Del begge sidene på -1.
a=-\frac{\frac{9}{4}}{-1} a=-\frac{\frac{15}{4}}{-1}
Hvis du deler på -1, gjør du om gangingen med -1.
a=\frac{9}{4}
Del -\frac{9}{4} på -1.
a=\frac{15}{4}
Del -\frac{15}{4} på -1.
a=\frac{9}{4} a=\frac{15}{4}
Ligningen er nå løst.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}