Løs for x
x=11
x=-13
Graf
Aksje
Kopiert til utklippstavle
144=x^{2}+2x+1
Bruk binomialformelen \left(a+b\right)^{2}=a^{2}+2ab+b^{2} til å utvide \left(x+1\right)^{2}.
x^{2}+2x+1=144
Bytt om sidene, slik at alle variabelledd er på venstre side.
x^{2}+2x+1-144=0
Trekk fra 144 fra begge sider.
x^{2}+2x-143=0
Trekk fra 144 fra 1 for å få -143.
a+b=2 ab=-143
Hvis du vil løse formelen, faktor x^{2}+2x-143 å bruke formel x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hvis du vil finne a og b, setter du opp et system som skal løses.
-1,143 -11,13
Siden ab er negativ, a og b har motsatt tegn. Siden a+b er positiv, har det positive tallet større absolutt verdi enn det negative. Vis alle slike hel talls par som gir produkt -143.
-1+143=142 -11+13=2
Beregn summen for hvert par.
a=-11 b=13
Løsningen er paret som gir Summer 2.
\left(x-11\right)\left(x+13\right)
Skriv om det faktoriserte uttrykket \left(x+a\right)\left(x+b\right) ved hjelp av de oppnådde verdiene.
x=11 x=-13
Hvis du vil finne formel løsninger, kan du løse x-11=0 og x+13=0.
144=x^{2}+2x+1
Bruk binomialformelen \left(a+b\right)^{2}=a^{2}+2ab+b^{2} til å utvide \left(x+1\right)^{2}.
x^{2}+2x+1=144
Bytt om sidene, slik at alle variabelledd er på venstre side.
x^{2}+2x+1-144=0
Trekk fra 144 fra begge sider.
x^{2}+2x-143=0
Trekk fra 144 fra 1 for å få -143.
a+b=2 ab=1\left(-143\right)=-143
For å løse ligningen, faktorer du venstre side ved gruppering. Første, venstre side må skrives på nytt som x^{2}+ax+bx-143. Hvis du vil finne a og b, setter du opp et system som skal løses.
-1,143 -11,13
Siden ab er negativ, a og b har motsatt tegn. Siden a+b er positiv, har det positive tallet større absolutt verdi enn det negative. Vis alle slike hel talls par som gir produkt -143.
-1+143=142 -11+13=2
Beregn summen for hvert par.
a=-11 b=13
Løsningen er paret som gir Summer 2.
\left(x^{2}-11x\right)+\left(13x-143\right)
Skriv om x^{2}+2x-143 som \left(x^{2}-11x\right)+\left(13x-143\right).
x\left(x-11\right)+13\left(x-11\right)
Faktor ut x i den første og 13 i den andre gruppen.
\left(x-11\right)\left(x+13\right)
Faktorer ut det felles leddet x-11 ved å bruke den distributive lov.
x=11 x=-13
Hvis du vil finne formel løsninger, kan du løse x-11=0 og x+13=0.
144=x^{2}+2x+1
Bruk binomialformelen \left(a+b\right)^{2}=a^{2}+2ab+b^{2} til å utvide \left(x+1\right)^{2}.
x^{2}+2x+1=144
Bytt om sidene, slik at alle variabelledd er på venstre side.
x^{2}+2x+1-144=0
Trekk fra 144 fra begge sider.
x^{2}+2x-143=0
Trekk fra 144 fra 1 for å få -143.
x=\frac{-2±\sqrt{2^{2}-4\left(-143\right)}}{2}
Denne ligningen er i standard form: ax^{2}+bx+c=0. Sett inn 1 for a, 2 for b og -143 for c i andregradsformelen, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-143\right)}}{2}
Kvadrer 2.
x=\frac{-2±\sqrt{4+572}}{2}
Multipliser -4 ganger -143.
x=\frac{-2±\sqrt{576}}{2}
Legg sammen 4 og 572.
x=\frac{-2±24}{2}
Ta kvadratroten av 576.
x=\frac{22}{2}
Nå kan du løse formelen x=\frac{-2±24}{2} når ± er pluss. Legg sammen -2 og 24.
x=11
Del 22 på 2.
x=-\frac{26}{2}
Nå kan du løse formelen x=\frac{-2±24}{2} når ± er minus. Trekk fra 24 fra -2.
x=-13
Del -26 på 2.
x=11 x=-13
Ligningen er nå løst.
144=x^{2}+2x+1
Bruk binomialformelen \left(a+b\right)^{2}=a^{2}+2ab+b^{2} til å utvide \left(x+1\right)^{2}.
x^{2}+2x+1=144
Bytt om sidene, slik at alle variabelledd er på venstre side.
\left(x+1\right)^{2}=144
Faktoriser x^{2}+2x+1. Generelt, når x^{2}+bx+c er et kvadrattall, kan det alltid faktoriseres som \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{144}
Ta kvadratroten av begge sider av ligningen.
x+1=12 x+1=-12
Forenkle.
x=11 x=-13
Trekk fra 1 fra begge sider av ligningen.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}