Evaluer
10+2i
Reell del
10
Aksje
Kopiert til utklippstavle
12+0-2i\left(-1-i\right)
Multipliser 0 med 7i for å få 0.
12-2i\left(-1-i\right)
Legg sammen 12 og 0 for å få 12.
12-\left(2i\left(-1\right)+2\left(-1\right)i^{2}\right)
Multipliser 2i ganger -1-i.
12-\left(2i\left(-1\right)+2\left(-1\right)\left(-1\right)\right)
-1 er per definisjon i^{2}.
12-\left(2-2i\right)
Utfør multiplikasjonene i 2i\left(-1\right)+2\left(-1\right)\left(-1\right). Endre rekkefølgen på leddene.
12-2-2i
Trekk 2-2i fra 12 ved å trekke fra de tilsvarende reelle og imaginære delene.
10+2i
Trekk fra 2 fra 12.
Re(12+0-2i\left(-1-i\right))
Multipliser 0 med 7i for å få 0.
Re(12-2i\left(-1-i\right))
Legg sammen 12 og 0 for å få 12.
Re(12-\left(2i\left(-1\right)+2\left(-1\right)i^{2}\right))
Multipliser 2i ganger -1-i.
Re(12-\left(2i\left(-1\right)+2\left(-1\right)\left(-1\right)\right))
-1 er per definisjon i^{2}.
Re(12-\left(2-2i\right))
Utfør multiplikasjonene i 2i\left(-1\right)+2\left(-1\right)\left(-1\right). Endre rekkefølgen på leddene.
Re(12-2-2i)
Trekk 2-2i fra 12 ved å trekke fra de tilsvarende reelle og imaginære delene.
Re(10+2i)
Trekk fra 2 fra 12.
10
Den reelle delen av 10+2i er 10.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}