Evaluer
\frac{13}{30}\approx 0,433333333
Faktoriser
\frac{13}{2 \cdot 3 \cdot 5} = 0,43333333333333335
Aksje
Kopiert til utklippstavle
\frac{1\times 5+2}{5\times 14}+\frac{1}{3}
Uttrykk \frac{\frac{1\times 5+2}{5}}{14} som en enkelt brøk.
\frac{5+2}{5\times 14}+\frac{1}{3}
Multipliser 1 med 5 for å få 5.
\frac{7}{5\times 14}+\frac{1}{3}
Legg sammen 5 og 2 for å få 7.
\frac{7}{70}+\frac{1}{3}
Multipliser 5 med 14 for å få 70.
\frac{1}{10}+\frac{1}{3}
Forkort brøken \frac{7}{70} til minste felles nevner ved å dele teller og nevner på 7.
\frac{3}{30}+\frac{10}{30}
Minste felles multiplum av 10 og 3 er 30. Konverter \frac{1}{10} og \frac{1}{3} til brøker med nevner 30.
\frac{3+10}{30}
Siden \frac{3}{30} og \frac{10}{30} har samme nevner, kan du legge dem sammen ved å legge sammen tellerne.
\frac{13}{30}
Legg sammen 3 og 10 for å få 13.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}