Faktoriser
\left(c+1\right)\left(c^{22}-c^{21}+c^{20}-c^{19}+c^{18}-c^{17}+c^{16}-c^{15}+c^{14}-c^{13}+c^{12}-c^{11}+c^{10}-c^{9}+c^{8}-c^{7}+c^{6}-c^{5}+c^{4}-c^{3}+c^{2}-c+1\right)
Evaluer
c^{23}+1
Spørrelek
Polynomial
1 ^ { 2 } + c ^ { 23 }
Aksje
Kopiert til utklippstavle
c^{23}+1
Multipliser og kombiner like ledd.
\left(c+1\right)\left(c^{22}-c^{21}+c^{20}-c^{19}+c^{18}-c^{17}+c^{16}-c^{15}+c^{14}-c^{13}+c^{12}-c^{11}+c^{10}-c^{9}+c^{8}-c^{7}+c^{6}-c^{5}+c^{4}-c^{3}+c^{2}-c+1\right)
Ifølge teoremet om rasjonale røtter er alle rasjonale røtter av et polynom i formen \frac{p}{q}, der p dividerer konstantleddet 1 og q dividerer den ledende koeffisienten 1. En slik rot er -1. Du skal beregne polynomet ved å dele den med c+1. Polynom c^{22}-c^{21}+c^{20}-c^{19}+c^{18}-c^{17}+c^{16}-c^{15}+c^{14}-c^{13}+c^{12}-c^{11}+c^{10}-c^{9}+c^{8}-c^{7}+c^{6}-c^{5}+c^{4}-c^{3}+c^{2}-c+1 er ikke beregnet fordi det ikke har noen rasjonelle røtter.
1+c^{23}
Regn ut 1 opphøyd i 2 og få 1.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}