Løs for Δ
\Delta =-\frac{1817}{50t\left(-\frac{49t}{10}+11,11\right)}
t\neq \frac{1111}{490}\text{ and }t\neq 0
Løs for t (complex solution)
t=\frac{5\left(\sqrt{\Delta \left(\frac{1234321\Delta }{10000}+712,264\right)}+\frac{1111\Delta }{100}\right)}{49\Delta }
t=\frac{-\frac{5\sqrt{\Delta \left(\frac{1234321\Delta }{10000}+712,264\right)}}{49}+\frac{1111\Delta }{980}}{\Delta }\text{, }\Delta \neq 0
Løs for t
t=\frac{5\left(\sqrt{\Delta \left(\frac{1234321\Delta }{10000}+712,264\right)}+\frac{1111\Delta }{100}\right)}{49\Delta }
t=\frac{-\frac{5\sqrt{\Delta \left(\frac{1234321\Delta }{10000}+712,264\right)}}{49}+\frac{1111\Delta }{980}}{\Delta }\text{, }\Delta >0\text{ or }\Delta \leq -\frac{7122640}{1234321}
Aksje
Kopiert til utklippstavle
11,11\Delta t-4,9\Delta t^{2}=-36,34
Bytt om sidene, slik at alle variabelledd er på venstre side.
\left(11,11t-4,9t^{2}\right)\Delta =-36,34
Kombiner alle ledd som inneholder \Delta .
\left(-\frac{49t^{2}}{10}+\frac{1111t}{100}\right)\Delta =-36,34
Ligningen er i standardform.
\frac{\left(-\frac{49t^{2}}{10}+\frac{1111t}{100}\right)\Delta }{-\frac{49t^{2}}{10}+\frac{1111t}{100}}=-\frac{36,34}{-\frac{49t^{2}}{10}+\frac{1111t}{100}}
Del begge sidene på 11,11t-4,9t^{2}.
\Delta =-\frac{36,34}{-\frac{49t^{2}}{10}+\frac{1111t}{100}}
Hvis du deler på 11,11t-4,9t^{2}, gjør du om gangingen med 11,11t-4,9t^{2}.
\Delta =-\frac{1817}{50t\left(-\frac{49t}{10}+11,11\right)}
Del -36,34 på 11,11t-4,9t^{2}.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}