Evaluer
3t
Differensier med hensyn til t
3
Spørrelek
Polynomial
5 problemer som ligner på:
- 3 t - ( - 4 t ) + 7 t + 2 t - 5 t + ( - 3 t ) - ( - t )
Aksje
Kopiert til utklippstavle
-3t+4t+7t+2t-5t-3t-\left(-t\right)
Det motsatte av -4t er 4t.
t+7t+2t-5t-3t-\left(-t\right)
Kombiner -3t og 4t for å få t.
8t+2t-5t-3t-\left(-t\right)
Kombiner t og 7t for å få 8t.
10t-5t-3t-\left(-t\right)
Kombiner 8t og 2t for å få 10t.
5t-3t-\left(-t\right)
Kombiner 10t og -5t for å få 5t.
2t-\left(-t\right)
Kombiner 5t og -3t for å få 2t.
2t+t
Multipliser -1 med -1 for å få 1.
3t
Kombiner 2t og t for å få 3t.
\frac{\mathrm{d}}{\mathrm{d}t}(-3t+4t+7t+2t-5t-3t-\left(-t\right))
Det motsatte av -4t er 4t.
\frac{\mathrm{d}}{\mathrm{d}t}(t+7t+2t-5t-3t-\left(-t\right))
Kombiner -3t og 4t for å få t.
\frac{\mathrm{d}}{\mathrm{d}t}(8t+2t-5t-3t-\left(-t\right))
Kombiner t og 7t for å få 8t.
\frac{\mathrm{d}}{\mathrm{d}t}(10t-5t-3t-\left(-t\right))
Kombiner 8t og 2t for å få 10t.
\frac{\mathrm{d}}{\mathrm{d}t}(5t-3t-\left(-t\right))
Kombiner 10t og -5t for å få 5t.
\frac{\mathrm{d}}{\mathrm{d}t}(2t-\left(-t\right))
Kombiner 5t og -3t for å få 2t.
\frac{\mathrm{d}}{\mathrm{d}t}(2t+t)
Multipliser -1 med -1 for å få 1.
\frac{\mathrm{d}}{\mathrm{d}t}(3t)
Kombiner 2t og t for å få 3t.
3t^{1-1}
Den deriverte av ax^{n} er nax^{n-1}.
3t^{0}
Trekk fra 1 fra 1.
3\times 1
For ethvert ledd t bortsett fra 0, t^{0}=1.
3
For ethvert ledd t, t\times 1=t og 1t=t.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}