Hopp til hovedinnhold
Evaluer
Tick mark Image
Utvid
Tick mark Image

Lignende problemer fra nettsøk

Aksje

x^{2}-xy+\frac{1}{4}y^{2}+\left(x+\frac{1}{2}y\right)^{2}+2\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right)
Bruk binomialformelen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til å utvide \left(x-\frac{1}{2}y\right)^{2}.
x^{2}-xy+\frac{1}{4}y^{2}+x^{2}+xy+\frac{1}{4}y^{2}+2\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right)
Bruk binomialformelen \left(a+b\right)^{2}=a^{2}+2ab+b^{2} til å utvide \left(x+\frac{1}{2}y\right)^{2}.
2x^{2}-xy+\frac{1}{4}y^{2}+xy+\frac{1}{4}y^{2}+2\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right)
Kombiner x^{2} og x^{2} for å få 2x^{2}.
2x^{2}+\frac{1}{4}y^{2}+\frac{1}{4}y^{2}+2\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right)
Kombiner -xy og xy for å få 0.
2x^{2}+\frac{1}{2}y^{2}+2\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right)
Kombiner \frac{1}{4}y^{2} og \frac{1}{4}y^{2} for å få \frac{1}{2}y^{2}.
2x^{2}+\frac{1}{2}y^{2}+\left(2x-y\right)\left(x+\frac{1}{2}y\right)
Bruk den distributive lov til å multiplisere 2 med x-\frac{1}{2}y.
2x^{2}+\frac{1}{2}y^{2}+2x^{2}-\frac{1}{2}y^{2}
Bruk den distributive lov til å multiplisere 2x-y med x+\frac{1}{2}y og kombinere like ledd.
4x^{2}+\frac{1}{2}y^{2}-\frac{1}{2}y^{2}
Kombiner 2x^{2} og 2x^{2} for å få 4x^{2}.
4x^{2}
Kombiner \frac{1}{2}y^{2} og -\frac{1}{2}y^{2} for å få 0.
x^{2}-xy+\frac{1}{4}y^{2}+\left(x+\frac{1}{2}y\right)^{2}+2\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right)
Bruk binomialformelen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til å utvide \left(x-\frac{1}{2}y\right)^{2}.
x^{2}-xy+\frac{1}{4}y^{2}+x^{2}+xy+\frac{1}{4}y^{2}+2\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right)
Bruk binomialformelen \left(a+b\right)^{2}=a^{2}+2ab+b^{2} til å utvide \left(x+\frac{1}{2}y\right)^{2}.
2x^{2}-xy+\frac{1}{4}y^{2}+xy+\frac{1}{4}y^{2}+2\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right)
Kombiner x^{2} og x^{2} for å få 2x^{2}.
2x^{2}+\frac{1}{4}y^{2}+\frac{1}{4}y^{2}+2\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right)
Kombiner -xy og xy for å få 0.
2x^{2}+\frac{1}{2}y^{2}+2\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right)
Kombiner \frac{1}{4}y^{2} og \frac{1}{4}y^{2} for å få \frac{1}{2}y^{2}.
2x^{2}+\frac{1}{2}y^{2}+\left(2x-y\right)\left(x+\frac{1}{2}y\right)
Bruk den distributive lov til å multiplisere 2 med x-\frac{1}{2}y.
2x^{2}+\frac{1}{2}y^{2}+2x^{2}-\frac{1}{2}y^{2}
Bruk den distributive lov til å multiplisere 2x-y med x+\frac{1}{2}y og kombinere like ledd.
4x^{2}+\frac{1}{2}y^{2}-\frac{1}{2}y^{2}
Kombiner 2x^{2} og 2x^{2} for å få 4x^{2}.
4x^{2}
Kombiner \frac{1}{2}y^{2} og -\frac{1}{2}y^{2} for å få 0.