Hopp til hovedinnhold
Løs for x
Tick mark Image
Graf

Lignende problemer fra nettsøk

Aksje

x-2x^{2}=-2x-4
Trekk fra 2x^{2} fra begge sider.
x-2x^{2}+2x=-4
Legg til 2x på begge sider.
3x-2x^{2}=-4
Kombiner x og 2x for å få 3x.
3x-2x^{2}+4=0
Legg til 4 på begge sider.
-2x^{2}+3x+4=0
Alle formler for skjemaet ax^{2}+bx+c=0 kan løses ved hjelp av den kvadratiske formelen: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formelen gir to løsninger, én når ± er addisjon og en når det er subtraksjon.
x=\frac{-3±\sqrt{3^{2}-4\left(-2\right)\times 4}}{2\left(-2\right)}
Denne ligningen er i standard form: ax^{2}+bx+c=0. Sett inn -2 for a, 3 for b og 4 for c i andregradsformelen, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-2\right)\times 4}}{2\left(-2\right)}
Kvadrer 3.
x=\frac{-3±\sqrt{9+8\times 4}}{2\left(-2\right)}
Multipliser -4 ganger -2.
x=\frac{-3±\sqrt{9+32}}{2\left(-2\right)}
Multipliser 8 ganger 4.
x=\frac{-3±\sqrt{41}}{2\left(-2\right)}
Legg sammen 9 og 32.
x=\frac{-3±\sqrt{41}}{-4}
Multipliser 2 ganger -2.
x=\frac{\sqrt{41}-3}{-4}
Nå kan du løse formelen x=\frac{-3±\sqrt{41}}{-4} når ± er pluss. Legg sammen -3 og \sqrt{41}.
x=\frac{3-\sqrt{41}}{4}
Del -3+\sqrt{41} på -4.
x=\frac{-\sqrt{41}-3}{-4}
Nå kan du løse formelen x=\frac{-3±\sqrt{41}}{-4} når ± er minus. Trekk fra \sqrt{41} fra -3.
x=\frac{\sqrt{41}+3}{4}
Del -3-\sqrt{41} på -4.
x=\frac{3-\sqrt{41}}{4} x=\frac{\sqrt{41}+3}{4}
Ligningen er nå løst.
x-2x^{2}=-2x-4
Trekk fra 2x^{2} fra begge sider.
x-2x^{2}+2x=-4
Legg til 2x på begge sider.
3x-2x^{2}=-4
Kombiner x og 2x for å få 3x.
-2x^{2}+3x=-4
Andregradsligninger som denne kan løses ved å fullføre kvadratet. For å kunne fullføre kvadratet, må ligningen først ha formen x^{2}+bx=c.
\frac{-2x^{2}+3x}{-2}=-\frac{4}{-2}
Del begge sidene på -2.
x^{2}+\frac{3}{-2}x=-\frac{4}{-2}
Hvis du deler på -2, gjør du om gangingen med -2.
x^{2}-\frac{3}{2}x=-\frac{4}{-2}
Del 3 på -2.
x^{2}-\frac{3}{2}x=2
Del -4 på -2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=2+\left(-\frac{3}{4}\right)^{2}
Del -\frac{3}{2}, koeffisienten i x termen, etter 2 for å få -\frac{3}{4}. Deretter legger du til kvadrat firkanten av -\frac{3}{4} på begge sider av ligningen. Dette trinnet gjør venstre side av ligningen til en perfekt firkant.
x^{2}-\frac{3}{2}x+\frac{9}{16}=2+\frac{9}{16}
Kvadrer -\frac{3}{4} ved å kvadrere både telleren og nevneren i brøken.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{41}{16}
Legg sammen 2 og \frac{9}{16}.
\left(x-\frac{3}{4}\right)^{2}=\frac{41}{16}
Faktoriser x^{2}-\frac{3}{2}x+\frac{9}{16}. Generelt, når x^{2}+bx+c er et kvadrattall, kan det alltid faktoriseres som \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
Ta kvadratroten av begge sider av ligningen.
x-\frac{3}{4}=\frac{\sqrt{41}}{4} x-\frac{3}{4}=-\frac{\sqrt{41}}{4}
Forenkle.
x=\frac{\sqrt{41}+3}{4} x=\frac{3-\sqrt{41}}{4}
Legg til \frac{3}{4} på begge sider av ligningen.