Hopp til hovedinnhold
Løs for v
Tick mark Image

Lignende problemer fra nettsøk

Aksje

v^{2}+v-20=10
Bruk den distributive lov til å multiplisere v+5 med v-4 og kombinere like ledd.
v^{2}+v-20-10=0
Trekk fra 10 fra begge sider.
v^{2}+v-30=0
Trekk fra 10 fra -20 for å få -30.
v=\frac{-1±\sqrt{1^{2}-4\left(-30\right)}}{2}
Denne ligningen er i standard form: ax^{2}+bx+c=0. Sett inn 1 for a, 1 for b og -30 for c i andregradsformelen, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-1±\sqrt{1-4\left(-30\right)}}{2}
Kvadrer 1.
v=\frac{-1±\sqrt{1+120}}{2}
Multipliser -4 ganger -30.
v=\frac{-1±\sqrt{121}}{2}
Legg sammen 1 og 120.
v=\frac{-1±11}{2}
Ta kvadratroten av 121.
v=\frac{10}{2}
Nå kan du løse formelen v=\frac{-1±11}{2} når ± er pluss. Legg sammen -1 og 11.
v=5
Del 10 på 2.
v=-\frac{12}{2}
Nå kan du løse formelen v=\frac{-1±11}{2} når ± er minus. Trekk fra 11 fra -1.
v=-6
Del -12 på 2.
v=5 v=-6
Ligningen er nå løst.
v^{2}+v-20=10
Bruk den distributive lov til å multiplisere v+5 med v-4 og kombinere like ledd.
v^{2}+v=10+20
Legg til 20 på begge sider.
v^{2}+v=30
Legg sammen 10 og 20 for å få 30.
v^{2}+v+\left(\frac{1}{2}\right)^{2}=30+\left(\frac{1}{2}\right)^{2}
Del 1, koeffisienten i x termen, etter 2 for å få \frac{1}{2}. Deretter legger du til kvadrat firkanten av \frac{1}{2} på begge sider av ligningen. Dette trinnet gjør venstre side av ligningen til en perfekt firkant.
v^{2}+v+\frac{1}{4}=30+\frac{1}{4}
Kvadrer \frac{1}{2} ved å kvadrere både telleren og nevneren i brøken.
v^{2}+v+\frac{1}{4}=\frac{121}{4}
Legg sammen 30 og \frac{1}{4}.
\left(v+\frac{1}{2}\right)^{2}=\frac{121}{4}
Faktoriser v^{2}+v+\frac{1}{4}. Generelt, når x^{2}+bx+c er et kvadrattall, kan det alltid faktoriseres som \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v+\frac{1}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Ta kvadratroten av begge sider av ligningen.
v+\frac{1}{2}=\frac{11}{2} v+\frac{1}{2}=-\frac{11}{2}
Forenkle.
v=5 v=-6
Trekk fra \frac{1}{2} fra begge sider av ligningen.