Løs for a (complex solution)
\left\{\begin{matrix}a=-\frac{bx-x-b-5}{x+1}\text{, }&x\neq -1\\a\in \mathrm{C}\text{, }&x=-1\text{ and }b=-2\end{matrix}\right,
Løs for b (complex solution)
\left\{\begin{matrix}b=-\frac{ax-x+a-5}{x-1}\text{, }&x\neq 1\\b\in \mathrm{C}\text{, }&x=1\text{ and }a=3\end{matrix}\right,
Løs for a
\left\{\begin{matrix}a=-\frac{bx-x-b-5}{x+1}\text{, }&x\neq -1\\a\in \mathrm{R}\text{, }&x=-1\text{ and }b=-2\end{matrix}\right,
Løs for b
\left\{\begin{matrix}b=-\frac{ax-x+a-5}{x-1}\text{, }&x\neq 1\\b\in \mathrm{R}\text{, }&x=1\text{ and }a=3\end{matrix}\right,
Graf
Aksje
Kopiert til utklippstavle
ax+bx+a-b+1=x+6
Bruk den distributive lov til å multiplisere a+b med x.
ax+a-b+1=x+6-bx
Trekk fra bx fra begge sider.
ax+a+1=x+6-bx+b
Legg til b på begge sider.
ax+a=x+6-bx+b-1
Trekk fra 1 fra begge sider.
ax+a=x+5-bx+b
Trekk fra 1 fra 6 for å få 5.
\left(x+1\right)a=x+5-bx+b
Kombiner alle ledd som inneholder a.
\left(x+1\right)a=5+b+x-bx
Ligningen er i standardform.
\frac{\left(x+1\right)a}{x+1}=\frac{5+b+x-bx}{x+1}
Del begge sidene på x+1.
a=\frac{5+b+x-bx}{x+1}
Hvis du deler på x+1, gjør du om gangingen med x+1.
ax+bx+a-b+1=x+6
Bruk den distributive lov til å multiplisere a+b med x.
bx+a-b+1=x+6-ax
Trekk fra ax fra begge sider.
bx-b+1=x+6-ax-a
Trekk fra a fra begge sider.
bx-b=x+6-ax-a-1
Trekk fra 1 fra begge sider.
bx-b=x+5-ax-a
Trekk fra 1 fra 6 for å få 5.
\left(x-1\right)b=x+5-ax-a
Kombiner alle ledd som inneholder b.
\left(x-1\right)b=5-a+x-ax
Ligningen er i standardform.
\frac{\left(x-1\right)b}{x-1}=\frac{5-a+x-ax}{x-1}
Del begge sidene på x-1.
b=\frac{5-a+x-ax}{x-1}
Hvis du deler på x-1, gjør du om gangingen med x-1.
ax+bx+a-b+1=x+6
Bruk den distributive lov til å multiplisere a+b med x.
ax+a-b+1=x+6-bx
Trekk fra bx fra begge sider.
ax+a+1=x+6-bx+b
Legg til b på begge sider.
ax+a=x+6-bx+b-1
Trekk fra 1 fra begge sider.
ax+a=x+5-bx+b
Trekk fra 1 fra 6 for å få 5.
\left(x+1\right)a=x+5-bx+b
Kombiner alle ledd som inneholder a.
\left(x+1\right)a=5+b+x-bx
Ligningen er i standardform.
\frac{\left(x+1\right)a}{x+1}=\frac{5+b+x-bx}{x+1}
Del begge sidene på x+1.
a=\frac{5+b+x-bx}{x+1}
Hvis du deler på x+1, gjør du om gangingen med x+1.
ax+bx+a-b+1=x+6
Bruk den distributive lov til å multiplisere a+b med x.
bx+a-b+1=x+6-ax
Trekk fra ax fra begge sider.
bx-b+1=x+6-ax-a
Trekk fra a fra begge sider.
bx-b=x+6-ax-a-1
Trekk fra 1 fra begge sider.
bx-b=x+5-ax-a
Trekk fra 1 fra 6 for å få 5.
\left(x-1\right)b=x+5-ax-a
Kombiner alle ledd som inneholder b.
\left(x-1\right)b=5-a+x-ax
Ligningen er i standardform.
\frac{\left(x-1\right)b}{x-1}=\frac{5-a+x-ax}{x-1}
Del begge sidene på x-1.
b=\frac{5-a+x-ax}{x-1}
Hvis du deler på x-1, gjør du om gangingen med x-1.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}