Løs for x
x=\sqrt{2}+\frac{1}{2}\approx 1,914213562
x=\frac{1}{2}-\sqrt{2}\approx -0,914213562
Graf
Aksje
Kopiert til utklippstavle
2x-1=2\sqrt{2} 2x-1=-2\sqrt{2}
Ta kvadratroten av begge sider av ligningen.
2x-1-\left(-1\right)=2\sqrt{2}-\left(-1\right) 2x-1-\left(-1\right)=-2\sqrt{2}-\left(-1\right)
Legg til 1 på begge sider av ligningen.
2x=2\sqrt{2}-\left(-1\right) 2x=-2\sqrt{2}-\left(-1\right)
Når du trekker fra -1 fra seg selv har du 0 igjen.
2x=2\sqrt{2}+1
Trekk fra -1 fra 2\sqrt{2}.
2x=1-2\sqrt{2}
Trekk fra -1 fra -2\sqrt{2}.
\frac{2x}{2}=\frac{2\sqrt{2}+1}{2} \frac{2x}{2}=\frac{1-2\sqrt{2}}{2}
Del begge sidene på 2.
x=\frac{2\sqrt{2}+1}{2} x=\frac{1-2\sqrt{2}}{2}
Hvis du deler på 2, gjør du om gangingen med 2.
x=\sqrt{2}+\frac{1}{2}
Del 2\sqrt{2}+1 på 2.
x=\frac{1}{2}-\sqrt{2}
Del -2\sqrt{2}+1 på 2.
x=\sqrt{2}+\frac{1}{2} x=\frac{1}{2}-\sqrt{2}
Ligningen er nå løst.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}