Evaluer
\frac{4x^{8}-8x^{7}-21x^{6}+41x^{5}+19x^{4}-41x^{3}+18x^{2}+4x-23}{\left(\left(x-2\right)\left(x+1\right)\right)^{2}}
Utvid
\frac{4x^{8}-8x^{7}-21x^{6}+41x^{5}+19x^{4}-41x^{3}+18x^{2}+4x-23}{\left(\left(x-2\right)\left(x+1\right)\right)^{2}}
Graf
Aksje
Kopiert til utklippstavle
\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Multipliser 2x^{2} ganger \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Siden \frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} og \frac{1}{\left(x-2\right)\left(x+1\right)} har samme nevner, kan du subtrahere dem ved å subtrahere tellerne.
\left(\frac{2x^{4}+2x^{3}-4x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Utfør multiplikasjonene i 2x^{2}\left(x-2\right)\left(x+1\right)-1.
\left(\frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Kombiner like ledd i 2x^{4}+2x^{3}-4x^{3}-4x^{2}-1.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(\left(x-2\right)\left(x+1\right)\right)^{2}}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Hvis du vil heve \frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)} i en potens, øker du både telleren og nevneren i en potens, og deler deretter.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Utvid \left(\left(x-2\right)\left(x+1\right)\right)^{2}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+7\left(x-1\right)\left(x+2\right)
Bruk den distributive lov til å multiplisere -8 med 2x^{2}-1.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+\left(7x-7\right)\left(x+2\right)
Bruk den distributive lov til å multiplisere 7 med x-1.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+7x^{2}+7x-14
Bruk den distributive lov til å multiplisere 7x-7 med x+2 og kombinere like ledd.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-9x^{2}+8+7x-14
Kombiner -16x^{2} og 7x^{2} for å få -9x^{2}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-9x^{2}-6+7x
Trekk fra 14 fra 8 for å få -6.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}+\frac{\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Multipliser -9x^{2}-6+7x ganger \frac{\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Siden \frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}} og \frac{\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}} har samme nevner, kan du legge dem sammen ved å legge sammen tellerne.
\frac{4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-9x^{6}+18x^{5}+27x^{4}-36x^{3}-36x^{2}-6x^{4}+12x^{3}+18x^{2}-24x-24+7x^{5}-14x^{4}-21x^{3}+28x^{2}+28x}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Utfør multiplikasjonene i \left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}.
\frac{4x^{8}-8x^{7}-21x^{6}+19x^{4}+41x^{5}-41x^{3}+18x^{2}-23+4x}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Kombiner like ledd i 4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-9x^{6}+18x^{5}+27x^{4}-36x^{3}-36x^{2}-6x^{4}+12x^{3}+18x^{2}-24x-24+7x^{5}-14x^{4}-21x^{3}+28x^{2}+28x.
\frac{4x^{8}-8x^{7}-21x^{6}+19x^{4}+41x^{5}-41x^{3}+18x^{2}-23+4x}{x^{4}-2x^{3}-3x^{2}+4x+4}
Utvid \left(x-2\right)^{2}\left(x+1\right)^{2}.
\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Multipliser 2x^{2} ganger \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Siden \frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} og \frac{1}{\left(x-2\right)\left(x+1\right)} har samme nevner, kan du subtrahere dem ved å subtrahere tellerne.
\left(\frac{2x^{4}+2x^{3}-4x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Utfør multiplikasjonene i 2x^{2}\left(x-2\right)\left(x+1\right)-1.
\left(\frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Kombiner like ledd i 2x^{4}+2x^{3}-4x^{3}-4x^{2}-1.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(\left(x-2\right)\left(x+1\right)\right)^{2}}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Hvis du vil heve \frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)} i en potens, øker du både telleren og nevneren i en potens, og deler deretter.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Utvid \left(\left(x-2\right)\left(x+1\right)\right)^{2}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+7\left(x-1\right)\left(x+2\right)
Bruk den distributive lov til å multiplisere -8 med 2x^{2}-1.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+\left(7x-7\right)\left(x+2\right)
Bruk den distributive lov til å multiplisere 7 med x-1.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+7x^{2}+7x-14
Bruk den distributive lov til å multiplisere 7x-7 med x+2 og kombinere like ledd.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-9x^{2}+8+7x-14
Kombiner -16x^{2} og 7x^{2} for å få -9x^{2}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-9x^{2}-6+7x
Trekk fra 14 fra 8 for å få -6.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}+\frac{\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Multipliser -9x^{2}-6+7x ganger \frac{\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Siden \frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}} og \frac{\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}} har samme nevner, kan du legge dem sammen ved å legge sammen tellerne.
\frac{4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-9x^{6}+18x^{5}+27x^{4}-36x^{3}-36x^{2}-6x^{4}+12x^{3}+18x^{2}-24x-24+7x^{5}-14x^{4}-21x^{3}+28x^{2}+28x}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Utfør multiplikasjonene i \left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}.
\frac{4x^{8}-8x^{7}-21x^{6}+19x^{4}+41x^{5}-41x^{3}+18x^{2}-23+4x}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Kombiner like ledd i 4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-9x^{6}+18x^{5}+27x^{4}-36x^{3}-36x^{2}-6x^{4}+12x^{3}+18x^{2}-24x-24+7x^{5}-14x^{4}-21x^{3}+28x^{2}+28x.
\frac{4x^{8}-8x^{7}-21x^{6}+19x^{4}+41x^{5}-41x^{3}+18x^{2}-23+4x}{x^{4}-2x^{3}-3x^{2}+4x+4}
Utvid \left(x-2\right)^{2}\left(x+1\right)^{2}.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}