Løs for a
a=-\frac{2bc-12bd-2e-1}{c-6d}
c\neq 6d
Løs for b
b=-\frac{ac-6ad-2e-1}{2\left(c-6d\right)}
c\neq 6d
Aksje
Kopiert til utklippstavle
2ac-12da+4bc-24db=4e+2
Bruk den distributive lov til å multiplisere 2a+4b med c-6d.
2ac-12da-24db=4e+2-4bc
Trekk fra 4bc fra begge sider.
2ac-12da=4e+2-4bc+24db
Legg til 24db på begge sider.
\left(2c-12d\right)a=4e+2-4bc+24db
Kombiner alle ledd som inneholder a.
\left(2c-12d\right)a=2+4e+24bd-4bc
Ligningen er i standardform.
\frac{\left(2c-12d\right)a}{2c-12d}=\frac{2+4e+24bd-4bc}{2c-12d}
Del begge sidene på 2c-12d.
a=\frac{2+4e+24bd-4bc}{2c-12d}
Hvis du deler på 2c-12d, gjør du om gangingen med 2c-12d.
a=\frac{1+2e+12bd-2bc}{c-6d}
Del 4e+2-4bc+24db på 2c-12d.
2ac-12da+4bc-24db=4e+2
Bruk den distributive lov til å multiplisere 2a+4b med c-6d.
-12da+4bc-24db=4e+2-2ac
Trekk fra 2ac fra begge sider.
4bc-24db=4e+2-2ac+12da
Legg til 12da på begge sider.
\left(4c-24d\right)b=4e+2-2ac+12da
Kombiner alle ledd som inneholder b.
\left(4c-24d\right)b=2+4e+12ad-2ac
Ligningen er i standardform.
\frac{\left(4c-24d\right)b}{4c-24d}=\frac{2+4e+12ad-2ac}{4c-24d}
Del begge sidene på 4c-24d.
b=\frac{2+4e+12ad-2ac}{4c-24d}
Hvis du deler på 4c-24d, gjør du om gangingen med 4c-24d.
b=\frac{1+2e+6ad-ac}{2\left(c-6d\right)}
Del 4e+2-2ac+12da på 4c-24d.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}