Evaluer
-\sqrt{3}-4\sqrt{2}\approx -7,388905057
Aksje
Kopiert til utklippstavle
4\left(\sqrt{2}\right)^{2}-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
Bruk binomialformelen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til å utvide \left(2\sqrt{2}-1\right)^{2}.
4\times 2-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
Kvadratrota av \sqrt{2} er 2.
8-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
Multipliser 4 med 2 for å få 8.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
Legg sammen 8 og 1 for å få 9.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{2\sqrt{3}-3}{\sqrt{3}}
Faktoriser 12=2^{2}\times 3. Skriv kvadrat roten av produktet på nytt \sqrt{2^{2}\times 3} som produktet av kvadrat rot \sqrt{2^{2}}\sqrt{3}. Ta kvadratroten av 2^{2}.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Gjør nevneren til \frac{2\sqrt{3}-3}{\sqrt{3}} til et rasjonalt tall ved å multiplisere telleren og nevneren med \sqrt{3}.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3}
Kvadratrota av \sqrt{3} er 3.
\frac{3\left(9-4\sqrt{2}\right)}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Multipliser 9-4\sqrt{2} ganger \frac{3}{3}.
\frac{3\left(9-4\sqrt{2}\right)+\left(2\sqrt{3}-3\right)\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Siden \frac{3\left(9-4\sqrt{2}\right)}{3} og \frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3} har samme nevner, kan du legge dem sammen ved å legge sammen tellerne.
\frac{27-12\sqrt{2}+6-3\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Utfør multiplikasjonene i 3\left(9-4\sqrt{2}\right)+\left(2\sqrt{3}-3\right)\sqrt{3}.
\frac{33-12\sqrt{2}-3\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Utfør beregningene i 27-12\sqrt{2}+6-3\sqrt{3}.
11-4\sqrt{2}-\sqrt{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Del hvert ledd av 33-12\sqrt{2}-3\sqrt{3} på 3 for å få 11-4\sqrt{2}-\sqrt{3}.
11-4\sqrt{2}-\sqrt{3}-4\left(\sqrt{3}\right)^{2}+1
Bruk den distributive lov til å multiplisere 2\sqrt{3}-1 med -2\sqrt{3}-1 og kombinere like ledd.
11-4\sqrt{2}-\sqrt{3}-4\times 3+1
Kvadratrota av \sqrt{3} er 3.
11-4\sqrt{2}-\sqrt{3}-12+1
Multipliser -4 med 3 for å få -12.
11-4\sqrt{2}-\sqrt{3}-11
Legg sammen -12 og 1 for å få -11.
-4\sqrt{2}-\sqrt{3}
Trekk fra 11 fra 11 for å få 0.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}