Evaluer
c^{8}
Differensier med hensyn til c
8c^{7}
Aksje
Kopiert til utklippstavle
c^{3}c^{5}
Multipliser -1 med -1 for å få 1.
c^{8}
For å multiplisere potensene av det samme grunntallet, må du legge til eksponentene deres. Legg til 3 og 5 for å få 8.
-c^{3}\frac{\mathrm{d}}{\mathrm{d}c}(-c^{5})-c^{5}\frac{\mathrm{d}}{\mathrm{d}c}(-c^{3})
For to differensierbare funksjoner er den deriverte av produktet av to funksjoner den første funksjonen multiplisert med den deriverte av den andre funksjonen pluss den andre funksjonen ganger den deriverte av den første funksjonen.
-c^{3}\times 5\left(-1\right)c^{5-1}-c^{5}\times 3\left(-1\right)c^{3-1}
Den deriverte av et polynom er summen av de deriverte av leddene i uttrykket. Den deriverte av et konstantledd er 0. Den deriverte av ax^{n} er nax^{n-1}.
-c^{3}\left(-5\right)c^{4}-c^{5}\left(-3\right)c^{2}
Forenkle.
-5\left(-1\right)c^{3+4}-\left(-3c^{5+2}\right)
Hvis du vil multiplisere potensen av samme grunntall, kan du legge til eksponentene deres.
5c^{7}+3c^{7}
Forenkle.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}