Evaluer
x-7
Differensier med hensyn til x
1
Graf
Spørrelek
Algebra
5 problemer som ligner på:
( \sqrt { x } - \sqrt { 7 } ) ( \sqrt { x } + \sqrt { 7 } ) =
Aksje
Kopiert til utklippstavle
\left(\sqrt{x}\right)^{2}-\left(\sqrt{7}\right)^{2}
Multiplikasjon kan forvandles til differansen av kvadratene ved hjelp av regelen: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x-\left(\sqrt{7}\right)^{2}
Regn ut \sqrt{x} opphøyd i 2 og få x.
x-7
Kvadratrota av \sqrt{7} er 7.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(\sqrt{x}\right)^{2}-\left(\sqrt{7}\right)^{2})
Vurder \left(\sqrt{x}-\sqrt{7}\right)\left(\sqrt{x}+\sqrt{7}\right). Multiplikasjon kan forvandles til differansen av kvadratene ved hjelp av regelen: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(\sqrt{7}\right)^{2})
Regn ut \sqrt{x} opphøyd i 2 og få x.
\frac{\mathrm{d}}{\mathrm{d}x}(x-7)
Kvadratrota av \sqrt{7} er 7.
x^{1-1}
Den deriverte av et polynom er summen av de deriverte av leddene i uttrykket. Den deriverte av et konstantledd er 0. Den deriverte av ax^{n} er nax^{n-1}.
x^{0}
Trekk fra 1 fra 1.
1
For ethvert ledd t bortsett fra 0, t^{0}=1.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}