Faktoriser
\frac{-3\ln(x^{2}+x+1)+2\sqrt{3}\arctan(2x)+6|2x+1|}{6}
Evaluer
\frac{-3\ln(x^{2}+x+1)+2\sqrt{3}\arctan(2x)+6|2x+1|}{6}
Graf
Aksje
Kopiert til utklippstavle
factor(|2x+1|-\frac{1}{2}\log_{e}\left(x^{2}+x+1\right)+\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\arctan(\frac{2x}{1}))
Gjør nevneren til \frac{1}{\sqrt{3}} til et rasjonalt tall ved å multiplisere telleren og nevneren med \sqrt{3}.
factor(|2x+1|-\frac{1}{2}\log_{e}\left(x^{2}+x+1\right)+\frac{\sqrt{3}}{3}\arctan(\frac{2x}{1}))
Kvadratrota av \sqrt{3} er 3.
factor(|2x+1|-\frac{1}{2}\log_{e}\left(x^{2}+x+1\right)+\frac{\sqrt{3}}{3}\arctan(2x))
Alt delt på 1, er lik seg selv.
factor(|2x+1|-\frac{1}{2}\log_{e}\left(x^{2}+x+1\right)+\frac{\sqrt{3}\arctan(2x)}{3})
Uttrykk \frac{\sqrt{3}}{3}\arctan(2x) som en enkelt brøk.
\frac{6|2x+1|-3\log_{e}\left(x^{2}+x+1\right)+2\sqrt{3}\arctan(2x)}{6}
Faktoriser ut \frac{1}{6}.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}