Løs for x
x=-3
x=2
Graf
Aksje
Kopiert til utklippstavle
a+b=1 ab=-6
Hvis du vil løse formelen, faktor x^{2}+x-6 å bruke formel x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hvis du vil finne a og b, setter du opp et system som skal løses.
-1,6 -2,3
Siden ab er negativ, a og b har motsatt tegn. Siden a+b er positiv, har det positive tallet større absolutt verdi enn det negative. Vis alle slike hel talls par som gir produkt -6.
-1+6=5 -2+3=1
Beregn summen for hvert par.
a=-2 b=3
Løsningen er paret som gir Summer 1.
\left(x-2\right)\left(x+3\right)
Skriv om det faktoriserte uttrykket \left(x+a\right)\left(x+b\right) ved hjelp av de oppnådde verdiene.
x=2 x=-3
Hvis du vil finne formel løsninger, kan du løse x-2=0 og x+3=0.
a+b=1 ab=1\left(-6\right)=-6
For å løse ligningen, faktorer du venstre side ved gruppering. Første, venstre side må skrives på nytt som x^{2}+ax+bx-6. Hvis du vil finne a og b, setter du opp et system som skal løses.
-1,6 -2,3
Siden ab er negativ, a og b har motsatt tegn. Siden a+b er positiv, har det positive tallet større absolutt verdi enn det negative. Vis alle slike hel talls par som gir produkt -6.
-1+6=5 -2+3=1
Beregn summen for hvert par.
a=-2 b=3
Løsningen er paret som gir Summer 1.
\left(x^{2}-2x\right)+\left(3x-6\right)
Skriv om x^{2}+x-6 som \left(x^{2}-2x\right)+\left(3x-6\right).
x\left(x-2\right)+3\left(x-2\right)
Faktor ut x i den første og 3 i den andre gruppen.
\left(x-2\right)\left(x+3\right)
Faktorer ut det felles leddet x-2 ved å bruke den distributive lov.
x=2 x=-3
Hvis du vil finne formel løsninger, kan du løse x-2=0 og x+3=0.
x^{2}+x-6=0
Alle formler for skjemaet ax^{2}+bx+c=0 kan løses ved hjelp av den kvadratiske formelen: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formelen gir to løsninger, én når ± er addisjon og en når det er subtraksjon.
x=\frac{-1±\sqrt{1^{2}-4\left(-6\right)}}{2}
Denne ligningen er i standard form: ax^{2}+bx+c=0. Sett inn 1 for a, 1 for b og -6 for c i andregradsformelen, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-6\right)}}{2}
Kvadrer 1.
x=\frac{-1±\sqrt{1+24}}{2}
Multipliser -4 ganger -6.
x=\frac{-1±\sqrt{25}}{2}
Legg sammen 1 og 24.
x=\frac{-1±5}{2}
Ta kvadratroten av 25.
x=\frac{4}{2}
Nå kan du løse formelen x=\frac{-1±5}{2} når ± er pluss. Legg sammen -1 og 5.
x=2
Del 4 på 2.
x=-\frac{6}{2}
Nå kan du løse formelen x=\frac{-1±5}{2} når ± er minus. Trekk fra 5 fra -1.
x=-3
Del -6 på 2.
x=2 x=-3
Ligningen er nå løst.
x^{2}+x-6=0
Andregradsligninger som denne kan løses ved å fullføre kvadratet. For å kunne fullføre kvadratet, må ligningen først ha formen x^{2}+bx=c.
x^{2}+x-6-\left(-6\right)=-\left(-6\right)
Legg til 6 på begge sider av ligningen.
x^{2}+x=-\left(-6\right)
Når du trekker fra -6 fra seg selv har du 0 igjen.
x^{2}+x=6
Trekk fra -6 fra 0.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
Del 1, koeffisienten i x termen, etter 2 for å få \frac{1}{2}. Deretter legger du til kvadrat firkanten av \frac{1}{2} på begge sider av ligningen. Dette trinnet gjør venstre side av ligningen til en perfekt firkant.
x^{2}+x+\frac{1}{4}=6+\frac{1}{4}
Kvadrer \frac{1}{2} ved å kvadrere både telleren og nevneren i brøken.
x^{2}+x+\frac{1}{4}=\frac{25}{4}
Legg sammen 6 og \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{25}{4}
Faktoriser x^{2}+x+\frac{1}{4}. Generelt, når x^{2}+bx+c er et kvadrattall, kan det alltid faktoriseres som \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Ta kvadratroten av begge sider av ligningen.
x+\frac{1}{2}=\frac{5}{2} x+\frac{1}{2}=-\frac{5}{2}
Forenkle.
x=2 x=-3
Trekk fra \frac{1}{2} fra begge sider av ligningen.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}