Løs for k
k=-\frac{\sqrt{2}\left(x^{2}+18\right)}{4x}
x\neq 0
Løs for x (complex solution)
x=\sqrt{2}\left(\sqrt{k^{2}-9}-k\right)
x=\sqrt{2}\left(-\sqrt{k^{2}-9}-k\right)
Løs for x
x=\sqrt{2}\left(\sqrt{k^{2}-9}-k\right)
x=\sqrt{2}\left(-\sqrt{k^{2}-9}-k\right)\text{, }|k|\geq 3
Graf
Aksje
Kopiert til utklippstavle
2\sqrt{2}kx+18=-x^{2}
Trekk fra x^{2} fra begge sider. Hvilket som helst tall trukket fra null gir sin negasjon.
2\sqrt{2}kx=-x^{2}-18
Trekk fra 18 fra begge sider.
2\sqrt{2}xk=-x^{2}-18
Ligningen er i standardform.
\frac{2\sqrt{2}xk}{2\sqrt{2}x}=\frac{-x^{2}-18}{2\sqrt{2}x}
Del begge sidene på 2\sqrt{2}x.
k=\frac{-x^{2}-18}{2\sqrt{2}x}
Hvis du deler på 2\sqrt{2}x, gjør du om gangingen med 2\sqrt{2}x.
k=-\frac{\sqrt{2}\left(x^{2}+18\right)}{4x}
Del -x^{2}-18 på 2\sqrt{2}x.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}