Løs for x
\left\{\begin{matrix}x=-i\ln(\frac{-2i\cos(y)-\sqrt{2}\sqrt{12\cos(y)-\cos(2y)-17}+6i}{2})+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}\text{, }&\frac{-2i\cos(y)-\sqrt{2}\sqrt{12\cos(y)-\cos(2y)-17}+6i}{2}\neq 0\\x=-i\ln(\frac{-2i\cos(y)+\sqrt{2}\sqrt{12\cos(y)-\cos(2y)-17}+6i}{2})+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}\text{, }&\frac{-2i\cos(y)+\sqrt{2}\sqrt{12\cos(y)-\cos(2y)-17}+6i}{2}\neq 0\end{matrix}\right,
Løs for y
\left\{\begin{matrix}y=-i\ln(\frac{-2\sin(x)-\sqrt{2}\sqrt{-\cos(2x)-12\sin(x)+17}+6}{2})+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}\text{, }&\frac{-2\sin(x)-\sqrt{2}\sqrt{-\cos(2x)-12\sin(x)+17}+6}{2}\neq 0\\y=-i\ln(\frac{-2\sin(x)+\sqrt{2}\sqrt{-\cos(2x)-12\sin(x)+17}+6}{2})+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}\text{, }&\frac{-2\sin(x)+\sqrt{2}\sqrt{-\cos(2x)-12\sin(x)+17}+6}{2}\neq 0\end{matrix}\right,
Aksje
Kopiert til utklippstavle
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}