Evaluer
-\frac{1}{2}=-0,5
Faktoriser
-\frac{1}{2} = -0,5
Aksje
Kopiert til utklippstavle
\sin(\frac{-5\pi }{6})
Uttrykk -5\times \frac{\pi }{6} som en enkelt brøk.
\sin(\frac{\pi }{2}+\frac{\pi }{3})=\sin(\frac{\pi }{2})\cos(\frac{\pi }{3})+\sin(\frac{\pi }{3})\cos(\frac{\pi }{2})
Bruk \sin(x+y)=\sin(x)\cos(y)+\sin(y)\cos(x) hvor x=\frac{\pi }{2} og y=\frac{\pi }{3} å få resultatet.
1\cos(\frac{\pi }{3})+\sin(\frac{\pi }{3})\cos(\frac{\pi }{2})
Få verdien av \sin(\frac{\pi }{2}) fra tabellen for trigonometriske verdier.
1\times \frac{1}{2}+\sin(\frac{\pi }{3})\cos(\frac{\pi }{2})
Få verdien av \cos(\frac{\pi }{3}) fra tabellen for trigonometriske verdier.
1\times \frac{1}{2}+\frac{\sqrt{3}}{2}\cos(\frac{\pi }{2})
Få verdien av \sin(\frac{\pi }{3}) fra tabellen for trigonometriske verdier.
1\times \frac{1}{2}+\frac{\sqrt{3}}{2}\times 0
Få verdien av \cos(\frac{\pi }{2}) fra tabellen for trigonometriske verdier.
\frac{1}{2}
Utfør beregningene.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}