Løs for N
N=\frac{5\sqrt{37946}Cϕ}{1693116m^{2}}
C\neq 0\text{ and }m\neq 0
Løs for C
\left\{\begin{matrix}C=\frac{846558\sqrt{37946}Nm^{2}}{94865ϕ}\text{, }&m\neq 0\text{ and }N\neq 0\text{ and }ϕ\neq 0\\C\neq 0\text{, }&m\neq 0\text{ and }ϕ=0\text{ and }N=0\end{matrix}\right,
Aksje
Kopiert til utklippstavle
ϕ=55512000NC^{-1}\times 10^{-4}m^{2}\cos(\arctan(\frac{185\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
Multipliser 4500 med 12336 for å få 55512000.
ϕ=55512000NC^{-1}\times \frac{1}{10000}m^{2}\cos(\arctan(\frac{185\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
Regn ut 10 opphøyd i -4 og få \frac{1}{10000}.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{185\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
Multipliser 55512000 med \frac{1}{10000} for å få \frac{27756}{5}.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{185\times \frac{1}{100}m}{\frac{122}{2}\times 10^{-2}m}))
Regn ut 10 opphøyd i -2 og få \frac{1}{100}.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}m}{\frac{122}{2}\times 10^{-2}m}))
Multipliser 185 med \frac{1}{100} for å få \frac{37}{20}.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}m}{61\times 10^{-2}m}))
Del 122 på 2 for å få 61.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}m}{61\times \frac{1}{100}m}))
Regn ut 10 opphøyd i -2 og få \frac{1}{100}.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}m}{\frac{61}{100}m}))
Multipliser 61 med \frac{1}{100} for å få \frac{61}{100}.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}}{\frac{61}{100}}))
Eliminer m i både teller og nevner.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{37}{20}\times \frac{100}{61}))
Del \frac{37}{20} på \frac{61}{100} ved å multiplisere \frac{37}{20} med den resiproke verdien av \frac{61}{100}.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{185}{61}))
Multipliser \frac{37}{20} med \frac{100}{61} for å få \frac{185}{61}.
\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{185}{61}))=ϕ
Bytt om sidene, slik at alle variabelledd er på venstre side.
\frac{27756\cos(\arctan(\frac{185}{61}))m^{2}}{5C}N=ϕ
Ligningen er i standardform.
\frac{\frac{27756\cos(\arctan(\frac{185}{61}))m^{2}}{5C}N\times 5C}{27756\cos(\arctan(\frac{185}{61}))m^{2}}=\frac{ϕ\times 5C}{27756\cos(\arctan(\frac{185}{61}))m^{2}}
Del begge sidene på \frac{27756}{5}C^{-1}m^{2}\cos(\arctan(\frac{185}{61})).
N=\frac{ϕ\times 5C}{27756\cos(\arctan(\frac{185}{61}))m^{2}}
Hvis du deler på \frac{27756}{5}C^{-1}m^{2}\cos(\arctan(\frac{185}{61})), gjør du om gangingen med \frac{27756}{5}C^{-1}m^{2}\cos(\arctan(\frac{185}{61})).
N=\frac{5\sqrt{37946}Cϕ}{1693116m^{2}}
Del ϕ på \frac{27756}{5}C^{-1}m^{2}\cos(\arctan(\frac{185}{61})).
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}