Evaluer
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+x^{2}+С
Differensier med hensyn til x
2x\left(x^{2}+1\right)^{3}
Spørrelek
Integration
5 problemer som ligner på:
\int{ 2x { \left( { x }^{ 2 } +1 \right) }^{ 3 } }d x
Aksje
Kopiert til utklippstavle
\int 2x\left(\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
Bruk binomialformelen \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} til å utvide \left(x^{2}+1\right)^{3}.
\int 2x\left(x^{6}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 2 og 3 for å få 6.
\int 2x\left(x^{6}+3x^{4}+3x^{2}+1\right)\mathrm{d}x
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 2 og 2 for å få 4.
\int 2x^{7}+6x^{5}+6x^{3}+2x\mathrm{d}x
Bruk den distributive lov til å multiplisere 2x med x^{6}+3x^{4}+3x^{2}+1.
\int 2x^{7}\mathrm{d}x+\int 6x^{5}\mathrm{d}x+\int 6x^{3}\mathrm{d}x+\int 2x\mathrm{d}x
Integrer summeringsuttrykket etter termin.
2\int x^{7}\mathrm{d}x+6\int x^{5}\mathrm{d}x+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
Faktorisere ut konstanten i hver av betingelsene.
\frac{x^{8}}{4}+6\int x^{5}\mathrm{d}x+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
Siden \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, må du erstatte \int x^{7}\mathrm{d}x med \frac{x^{8}}{8}. Multipliser 2 ganger \frac{x^{8}}{8}.
\frac{x^{8}}{4}+x^{6}+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
Siden \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, må du erstatte \int x^{5}\mathrm{d}x med \frac{x^{6}}{6}. Multipliser 6 ganger \frac{x^{6}}{6}.
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+2\int x\mathrm{d}x
Siden \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, må du erstatte \int x^{3}\mathrm{d}x med \frac{x^{4}}{4}. Multipliser 6 ganger \frac{x^{4}}{4}.
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+x^{2}
Siden \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, må du erstatte \int x\mathrm{d}x med \frac{x^{2}}{2}. Multipliser 2 ganger \frac{x^{2}}{2}.
x^{2}+\frac{3x^{4}}{2}+x^{6}+\frac{x^{8}}{4}+С
Hvis F\left(x\right) er en antiderivert av f\left(x\right), angis settet med alle antideriverte av f\left(x\right) av F\left(x\right)+C. Legg derfor til konstanten av integrering C\in \mathrm{R} i resultatet.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}