Hopp til hovedinnhold
Evaluer
Tick mark Image
Differensier med hensyn til x
Tick mark Image

Lignende problemer fra nettsøk

Aksje

\int 2x\left(\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
Bruk binomialformelen \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} til å utvide \left(x^{2}+1\right)^{3}.
\int 2x\left(x^{6}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 2 og 3 for å få 6.
\int 2x\left(x^{6}+3x^{4}+3x^{2}+1\right)\mathrm{d}x
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 2 og 2 for å få 4.
\int 2x^{7}+6x^{5}+6x^{3}+2x\mathrm{d}x
Bruk den distributive lov til å multiplisere 2x med x^{6}+3x^{4}+3x^{2}+1.
\int 2x^{7}\mathrm{d}x+\int 6x^{5}\mathrm{d}x+\int 6x^{3}\mathrm{d}x+\int 2x\mathrm{d}x
Integrer summeringsuttrykket etter termin.
2\int x^{7}\mathrm{d}x+6\int x^{5}\mathrm{d}x+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
Faktorisere ut konstanten i hver av betingelsene.
\frac{x^{8}}{4}+6\int x^{5}\mathrm{d}x+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
Siden \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, må du erstatte \int x^{7}\mathrm{d}x med \frac{x^{8}}{8}. Multipliser 2 ganger \frac{x^{8}}{8}.
\frac{x^{8}}{4}+x^{6}+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
Siden \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, må du erstatte \int x^{5}\mathrm{d}x med \frac{x^{6}}{6}. Multipliser 6 ganger \frac{x^{6}}{6}.
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+2\int x\mathrm{d}x
Siden \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, må du erstatte \int x^{3}\mathrm{d}x med \frac{x^{4}}{4}. Multipliser 6 ganger \frac{x^{4}}{4}.
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+x^{2}
Siden \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, må du erstatte \int x\mathrm{d}x med \frac{x^{2}}{2}. Multipliser 2 ganger \frac{x^{2}}{2}.
x^{2}+\frac{3x^{4}}{2}+x^{6}+\frac{x^{8}}{4}+С
Hvis F\left(x\right) er en antiderivert av f\left(x\right), angis settet med alle antideriverte av f\left(x\right) av F\left(x\right)+C. Legg derfor til konstanten av integrering C\in \mathrm{R} i resultatet.