Evaluer
-\frac{2\left(\sqrt{x}\left(-\sqrt{x}+1\right)\right)^{\frac{3}{2}}}{3}+\frac{\sqrt{\left(-\sqrt{x}+1\right)x^{\frac{3}{2}}}}{2}-\frac{\sqrt{\sqrt{x}\left(-\sqrt{x}+1\right)}}{4}+\frac{\arctan(\frac{2\sqrt{\frac{\sqrt{x}}{-\sqrt{x}+1}}-\frac{1}{\sqrt{\sqrt{x}\left(-\sqrt{x}+1\right)}}}{2})}{8}+С
Differensier med hensyn til x
\frac{\left(-4|\left(-\sqrt{x}+1\right)x|-\sqrt{x}\right)\left(\sqrt{x}\left(-\sqrt{x}+1\right)\right)^{\frac{3}{2}}+\left(\sqrt{x}\left(8\sqrt{x}-5\right)+8\sqrt{x}\left(-\sqrt{x}+1\right)^{2}-4x^{\frac{3}{2}}+1\right)\sqrt{\left(-\sqrt{x}+1\right)x^{\frac{5}{2}}}+16\left(-\sqrt{x}+1\right)^{2}\sqrt{\left(-\sqrt{x}+1\right)x^{\frac{3}{2}}}x^{\frac{3}{2}}}{16\sqrt{\left(-\sqrt{x}+1\right)x^{\frac{5}{2}}}\left(\sqrt{x}\left(-\sqrt{x}+1\right)\right)^{\frac{3}{2}}}
Aksje
Kopiert til utklippstavle
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}