Hopp til hovedinnhold
Evaluer
Tick mark Image

Lignende problemer fra nettsøk

Aksje

\int x+\sqrt[3]{x}+\frac{1}{x^{2}}\mathrm{d}x
Evaluer det ubestemte integralet først.
\int x\mathrm{d}x+\int \sqrt[3]{x}\mathrm{d}x+\int \frac{1}{x^{2}}\mathrm{d}x
Integrer summeringsuttrykket etter termin.
\frac{x^{2}}{2}+\int \sqrt[3]{x}\mathrm{d}x+\int \frac{1}{x^{2}}\mathrm{d}x
Siden \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, må du erstatte \int x\mathrm{d}x med \frac{x^{2}}{2}.
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}+\int \frac{1}{x^{2}}\mathrm{d}x
Skriv om \sqrt[3]{x} som x^{\frac{1}{3}}. Siden \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, må du erstatte \int x^{\frac{1}{3}}\mathrm{d}x med \frac{x^{\frac{4}{3}}}{\frac{4}{3}}. Forenkle.
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}-\frac{1}{x}
Siden \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, må du erstatte \int \frac{1}{x^{2}}\mathrm{d}x med -\frac{1}{x}.
\frac{2^{2}}{2}+\frac{3}{4}\times 2^{\frac{4}{3}}-2^{-1}-\left(\frac{1^{2}}{2}+\frac{3}{4}\times 1^{\frac{4}{3}}-1^{-1}\right)
Det uthevede integralet er den antideriverte i uttrykket som evalueres ved øvre grense for integrasjon minus den antideriverte som evalueres ved nedre grense for integrasjon.
\frac{5}{4}+\frac{3\sqrt[3]{2}}{2}
Forenkle.