Hopp til hovedinnhold
Evaluer
Tick mark Image

Lignende problemer fra nettsøk

Aksje

\int x^{2}+2x-6\mathrm{d}x
Evaluer det ubestemte integralet først.
\int x^{2}\mathrm{d}x+\int 2x\mathrm{d}x+\int -6\mathrm{d}x
Integrer summeringsuttrykket etter termin.
\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x+\int -6\mathrm{d}x
Faktorisere ut konstanten i hver av betingelsene.
\frac{x^{3}}{3}+2\int x\mathrm{d}x+\int -6\mathrm{d}x
Siden \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, må du erstatte \int x^{2}\mathrm{d}x med \frac{x^{3}}{3}.
\frac{x^{3}}{3}+x^{2}+\int -6\mathrm{d}x
Siden \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, må du erstatte \int x\mathrm{d}x med \frac{x^{2}}{2}. Multipliser 2 ganger \frac{x^{2}}{2}.
\frac{x^{3}}{3}+x^{2}-6x
Finn integralet for -6 ved hjelp av tabellen med felles integrals regel \int a\mathrm{d}x=ax.
\frac{3^{3}}{3}+3^{2}-6\times 3-\left(\frac{\left(-1\right)^{3}}{3}+\left(-1\right)^{2}-6\left(-1\right)\right)
Det uthevede integralet er den antideriverte i uttrykket som evalueres ved øvre grense for integrasjon minus den antideriverte som evalueres ved nedre grense for integrasjon.
-\frac{20}{3}
Forenkle.