Evaluer
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}-\frac{1}{x}+С
Differensier med hensyn til x
x+\sqrt[3]{x}+\frac{1}{x^{2}}
Aksje
Kopiert til utklippstavle
\int x\mathrm{d}x+\int \sqrt[3]{x}\mathrm{d}x+\int \frac{1}{x^{2}}\mathrm{d}x
Integrer summeringsuttrykket etter termin.
\frac{x^{2}}{2}+\int \sqrt[3]{x}\mathrm{d}x+\int \frac{1}{x^{2}}\mathrm{d}x
Siden \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, må du erstatte \int x\mathrm{d}x med \frac{x^{2}}{2}.
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}+\int \frac{1}{x^{2}}\mathrm{d}x
Skriv om \sqrt[3]{x} som x^{\frac{1}{3}}. Siden \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, må du erstatte \int x^{\frac{1}{3}}\mathrm{d}x med \frac{x^{\frac{4}{3}}}{\frac{4}{3}}. Forenkle.
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}-\frac{1}{x}
Siden \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, må du erstatte \int \frac{1}{x^{2}}\mathrm{d}x med -\frac{1}{x}.
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}-\frac{1}{x}+С
Hvis F\left(x\right) er en antiderivert av f\left(x\right), angis settet med alle antideriverte av f\left(x\right) av F\left(x\right)+C. Legg derfor til konstanten av integrering C\in \mathrm{R} i resultatet.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}