Hopp til hovedinnhold
Evaluer
Tick mark Image
Differensier med hensyn til x
Tick mark Image

Lignende problemer fra nettsøk

Aksje

\int 7x^{2}\mathrm{d}x+\int -3x^{3}\mathrm{d}x+\int 4x^{5}\mathrm{d}x
Integrer summeringsuttrykket etter termin.
7\int x^{2}\mathrm{d}x-3\int x^{3}\mathrm{d}x+4\int x^{5}\mathrm{d}x
Faktorisere ut konstanten i hver av betingelsene.
\frac{7x^{3}}{3}-3\int x^{3}\mathrm{d}x+4\int x^{5}\mathrm{d}x
Siden \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, må du erstatte \int x^{2}\mathrm{d}x med \frac{x^{3}}{3}. Multipliser 7 ganger \frac{x^{3}}{3}.
\frac{7x^{3}}{3}-\frac{3x^{4}}{4}+4\int x^{5}\mathrm{d}x
Siden \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, må du erstatte \int x^{3}\mathrm{d}x med \frac{x^{4}}{4}. Multipliser -3 ganger \frac{x^{4}}{4}.
\frac{7x^{3}}{3}-\frac{3x^{4}}{4}+\frac{2x^{6}}{3}
Siden \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, må du erstatte \int x^{5}\mathrm{d}x med \frac{x^{6}}{6}. Multipliser 4 ganger \frac{x^{6}}{6}.
\frac{7x^{3}}{3}-\frac{3x^{4}}{4}+\frac{2x^{6}}{3}+С
Hvis F\left(x\right) er en antiderivert av f\left(x\right), angis settet med alle antideriverte av f\left(x\right) av F\left(x\right)+C. Legg derfor til konstanten av integrering C\in \mathrm{R} i resultatet.