Hopp til hovedinnhold
Evaluer
Tick mark Image
Differensier med hensyn til x
Tick mark Image

Lignende problemer fra nettsøk

Aksje

\int 8\left(x^{3}\right)^{3}+60\left(x^{3}\right)^{2}+150x^{3}+125\mathrm{d}x
Bruk binomialformelen \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} til å utvide \left(2x^{3}+5\right)^{3}.
\int 8x^{9}+60\left(x^{3}\right)^{2}+150x^{3}+125\mathrm{d}x
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 3 og 3 for å få 9.
\int 8x^{9}+60x^{6}+150x^{3}+125\mathrm{d}x
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 3 og 2 for å få 6.
\int 8x^{9}\mathrm{d}x+\int 60x^{6}\mathrm{d}x+\int 150x^{3}\mathrm{d}x+\int 125\mathrm{d}x
Integrer summeringsuttrykket etter termin.
8\int x^{9}\mathrm{d}x+60\int x^{6}\mathrm{d}x+150\int x^{3}\mathrm{d}x+\int 125\mathrm{d}x
Faktorisere ut konstanten i hver av betingelsene.
\frac{4x^{10}}{5}+60\int x^{6}\mathrm{d}x+150\int x^{3}\mathrm{d}x+\int 125\mathrm{d}x
Siden \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, må du erstatte \int x^{9}\mathrm{d}x med \frac{x^{10}}{10}. Multipliser 8 ganger \frac{x^{10}}{10}.
\frac{4x^{10}}{5}+\frac{60x^{7}}{7}+150\int x^{3}\mathrm{d}x+\int 125\mathrm{d}x
Siden \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, må du erstatte \int x^{6}\mathrm{d}x med \frac{x^{7}}{7}. Multipliser 60 ganger \frac{x^{7}}{7}.
\frac{4x^{10}}{5}+\frac{60x^{7}}{7}+\frac{75x^{4}}{2}+\int 125\mathrm{d}x
Siden \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, må du erstatte \int x^{3}\mathrm{d}x med \frac{x^{4}}{4}. Multipliser 150 ganger \frac{x^{4}}{4}.
\frac{4x^{10}}{5}+\frac{60x^{7}}{7}+\frac{75x^{4}}{2}+125x
Finn integralet for 125 ved hjelp av tabellen med felles integrals regel \int a\mathrm{d}x=ax.
125x+\frac{75x^{4}}{2}+\frac{60x^{7}}{7}+\frac{4x^{10}}{5}
Forenkle.
125x+\frac{75x^{4}}{2}+\frac{60x^{7}}{7}+\frac{4x^{10}}{5}+С
Hvis F\left(x\right) er en antiderivert av f\left(x\right), angis settet med alle antideriverte av f\left(x\right) av F\left(x\right)+C. Legg derfor til konstanten av integrering C\in \mathrm{R} i resultatet.