Hopp til hovedinnhold
Evaluer
Tick mark Image
Differensier med hensyn til t
Tick mark Image

Lignende problemer fra nettsøk

Aksje

\int \frac{9}{\sqrt[4]{t}}\mathrm{d}t+\int \frac{4}{t^{7}}\mathrm{d}t
Integrer summeringsuttrykket etter termin.
9\int \frac{1}{\sqrt[4]{t}}\mathrm{d}t+4\int \frac{1}{t^{7}}\mathrm{d}t
Faktorisere ut konstanten i hver av betingelsene.
12t^{\frac{3}{4}}+4\int \frac{1}{t^{7}}\mathrm{d}t
Skriv om \frac{1}{\sqrt[4]{t}} som t^{-\frac{1}{4}}. Siden \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, må du erstatte \int t^{-\frac{1}{4}}\mathrm{d}t med \frac{t^{\frac{3}{4}}}{\frac{3}{4}}. Forenkle. Multipliser 9 ganger \frac{4t^{\frac{3}{4}}}{3}.
12t^{\frac{3}{4}}-\frac{2}{3t^{6}}
Siden \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, må du erstatte \int \frac{1}{t^{7}}\mathrm{d}t med -\frac{1}{6t^{6}}. Multipliser 4 ganger -\frac{1}{6t^{6}}.
12t^{\frac{3}{4}}-\frac{2}{3t^{6}}+С
Hvis F\left(t\right) er en antiderivert av f\left(t\right), angis settet med alle antideriverte av f\left(t\right) av F\left(t\right)+C. Legg derfor til konstanten av integrering C\in \mathrm{R} i resultatet.