Løs for h
\left\{\begin{matrix}\\h=\frac{4}{5359375}\approx 0,000000746\text{, }&\text{unconditionally}\\h\in \mathrm{R}\text{, }&r=0\end{matrix}\right,
Løs for r
\left\{\begin{matrix}\\r=0\text{, }&\text{unconditionally}\\r\in \mathrm{R}\text{, }&h=\frac{4}{5359375}\end{matrix}\right,
Aksje
Kopiert til utklippstavle
\frac{4}{3}r^{3}=\frac{h}{3}\times \left(\frac{175r}{1}\right)^{3}
Eliminer \pi på begge sider.
4r^{3}=h\times \left(\frac{175r}{1}\right)^{3}
Multipliser begge sider av ligningen med 3.
4r^{3}=h\times \left(175r\right)^{3}
Alt delt på 1, er lik seg selv.
4r^{3}=h\times 175^{3}r^{3}
Utvid \left(175r\right)^{3}.
4r^{3}=h\times 5359375r^{3}
Regn ut 175 opphøyd i 3 og få 5359375.
h\times 5359375r^{3}=4r^{3}
Bytt om sidene, slik at alle variabelledd er på venstre side.
5359375r^{3}h=4r^{3}
Ligningen er i standardform.
\frac{5359375r^{3}h}{5359375r^{3}}=\frac{4r^{3}}{5359375r^{3}}
Del begge sidene på 5359375r^{3}.
h=\frac{4r^{3}}{5359375r^{3}}
Hvis du deler på 5359375r^{3}, gjør du om gangingen med 5359375r^{3}.
h=\frac{4}{5359375}
Del 4r^{3} på 5359375r^{3}.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}