\frac{ 3- \sqrt{ 2 } }{ (1- \sqrt{ 5 } }
Evaluer
\frac{\sqrt{2}+\sqrt{10}-3\sqrt{5}-3}{4}\approx -1,282928177
Aksje
Kopiert til utklippstavle
\frac{\left(3-\sqrt{2}\right)\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}
Gjør nevneren til \frac{3-\sqrt{2}}{1-\sqrt{5}} til et rasjonalt tall ved å multiplisere telleren og nevneren med 1+\sqrt{5}.
\frac{\left(3-\sqrt{2}\right)\left(1+\sqrt{5}\right)}{1^{2}-\left(\sqrt{5}\right)^{2}}
Vurder \left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right). Multiplikasjon kan forvandles til differansen av kvadratene ved hjelp av regelen: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3-\sqrt{2}\right)\left(1+\sqrt{5}\right)}{1-5}
Kvadrer 1. Kvadrer \sqrt{5}.
\frac{\left(3-\sqrt{2}\right)\left(1+\sqrt{5}\right)}{-4}
Trekk fra 5 fra 1 for å få -4.
\frac{3+3\sqrt{5}-\sqrt{2}-\sqrt{2}\sqrt{5}}{-4}
Bruk den distributive lov ved å multiplisere hvert ledd i 3-\sqrt{2} med hvert ledd i 1+\sqrt{5}.
\frac{3+3\sqrt{5}-\sqrt{2}-\sqrt{10}}{-4}
Hvis du vil multiplisere \sqrt{2} og \sqrt{5}, multipliserer du tallene under kvadrat roten.
\frac{-3-3\sqrt{5}+\sqrt{2}+\sqrt{10}}{4}
Multipliser både teller og nevner med -1.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}