Evaluer
-\frac{\sqrt{7}}{3}-\frac{\sqrt{14}}{6}-\frac{7\sqrt{2}}{6}-\frac{1}{3}\approx -3,488775824
Aksje
Kopiert til utklippstavle
\frac{\left(\sqrt{14}+2\right)\left(1+\sqrt{7}\right)}{\left(1-\sqrt{7}\right)\left(1+\sqrt{7}\right)}
Gjør nevneren til \frac{\sqrt{14}+2}{1-\sqrt{7}} til et rasjonalt tall ved å multiplisere telleren og nevneren med 1+\sqrt{7}.
\frac{\left(\sqrt{14}+2\right)\left(1+\sqrt{7}\right)}{1^{2}-\left(\sqrt{7}\right)^{2}}
Vurder \left(1-\sqrt{7}\right)\left(1+\sqrt{7}\right). Multiplikasjon kan forvandles til differansen av kvadratene ved hjelp av regelen: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{14}+2\right)\left(1+\sqrt{7}\right)}{1-7}
Kvadrer 1. Kvadrer \sqrt{7}.
\frac{\left(\sqrt{14}+2\right)\left(1+\sqrt{7}\right)}{-6}
Trekk fra 7 fra 1 for å få -6.
\frac{\sqrt{14}+\sqrt{14}\sqrt{7}+2+2\sqrt{7}}{-6}
Bruk den distributive lov ved å multiplisere hvert ledd i \sqrt{14}+2 med hvert ledd i 1+\sqrt{7}.
\frac{\sqrt{14}+\sqrt{7}\sqrt{2}\sqrt{7}+2+2\sqrt{7}}{-6}
Faktoriser 14=7\times 2. Skriv kvadrat roten av produktet på nytt \sqrt{7\times 2} som produktet av kvadrat rot \sqrt{7}\sqrt{2}.
\frac{\sqrt{14}+7\sqrt{2}+2+2\sqrt{7}}{-6}
Multipliser \sqrt{7} med \sqrt{7} for å få 7.
\frac{-\sqrt{14}-7\sqrt{2}-2-2\sqrt{7}}{6}
Multipliser både teller og nevner med -1.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}