Differensier med hensyn til y
\frac{2\left(3-y^{2}\right)}{\left(\left(y+2\right)\left(2y+3\right)\right)^{2}}
Evaluer
\frac{y}{\left(y+2\right)\left(2y+3\right)}
Graf
Aksje
Kopiert til utklippstavle
\frac{\left(2y^{2}+7y^{1}+6\right)\frac{\mathrm{d}}{\mathrm{d}y}(y^{1})-y^{1}\frac{\mathrm{d}}{\mathrm{d}y}(2y^{2}+7y^{1}+6)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
For to differensierbare funksjoner er den deriverte av kvotienten av to funksjoner nevneren multiplisert med den deriverte av telleren minus telleren multiplisert med den deriverte av nevneren, delt på nevneren i andre.
\frac{\left(2y^{2}+7y^{1}+6\right)y^{1-1}-y^{1}\left(2\times 2y^{2-1}+7y^{1-1}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
Den deriverte av et polynom er summen av de deriverte av leddene i uttrykket. Den deriverte av et konstantledd er 0. Den deriverte av ax^{n} er nax^{n-1}.
\frac{\left(2y^{2}+7y^{1}+6\right)y^{0}-y^{1}\left(4y^{1}+7y^{0}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
Forenkle.
\frac{2y^{2}y^{0}+7y^{1}y^{0}+6y^{0}-y^{1}\left(4y^{1}+7y^{0}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
Multipliser 2y^{2}+7y^{1}+6 ganger y^{0}.
\frac{2y^{2}y^{0}+7y^{1}y^{0}+6y^{0}-\left(y^{1}\times 4y^{1}+y^{1}\times 7y^{0}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
Multipliser y^{1} ganger 4y^{1}+7y^{0}.
\frac{2y^{2}+7y^{1}+6y^{0}-\left(4y^{1+1}+7y^{1}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
Hvis du vil multiplisere potensen av samme grunntall, kan du legge til eksponentene deres.
\frac{2y^{2}+7y^{1}+6y^{0}-\left(4y^{2}+7y^{1}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
Forenkle.
\frac{-2y^{2}+6y^{0}}{\left(2y^{2}+7y^{1}+6\right)^{2}}
Kombiner like ledd.
\frac{-2y^{2}+6y^{0}}{\left(2y^{2}+7y+6\right)^{2}}
For ethvert ledd t, t^{1}=t.
\frac{-2y^{2}+6\times 1}{\left(2y^{2}+7y+6\right)^{2}}
For ethvert ledd t bortsett fra 0, t^{0}=1.
\frac{-2y^{2}+6}{\left(2y^{2}+7y+6\right)^{2}}
For ethvert ledd t, t\times 1=t og 1t=t.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}