Hopp til hovedinnhold
Evaluer
Tick mark Image
Utvid
Tick mark Image
Graf

Lignende problemer fra nettsøk

Aksje

\frac{x-1}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+2\right)\left(x+3\right)}
Faktoriser x^{2}+4x+3. Faktoriser x^{2}+5x+6.
\frac{\left(x-1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Minste felles multiplum av \left(x+1\right)\left(x+3\right) og \left(x+2\right)\left(x+3\right) er \left(x+1\right)\left(x+2\right)\left(x+3\right). Multipliser \frac{x-1}{\left(x+1\right)\left(x+3\right)} ganger \frac{x+2}{x+2}. Multipliser \frac{2}{\left(x+2\right)\left(x+3\right)} ganger \frac{x+1}{x+1}.
\frac{\left(x-1\right)\left(x+2\right)+2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Siden \frac{\left(x-1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)} og \frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)} har samme nevner, kan du legge dem sammen ved å legge sammen tellerne.
\frac{x^{2}+2x-x-2+2x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Utfør multiplikasjonene i \left(x-1\right)\left(x+2\right)+2\left(x+1\right).
\frac{x^{2}+3x}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Kombiner like ledd i x^{2}+2x-x-2+2x+2.
\frac{x\left(x+3\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Faktoriser uttrykkene som ikke allerede er faktorisert i \frac{x^{2}+3x}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}.
\frac{x}{\left(x+1\right)\left(x+2\right)}
Eliminer x+3 i både teller og nevner.
\frac{x}{x^{2}+3x+2}
Utvid \left(x+1\right)\left(x+2\right).
\frac{x-1}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+2\right)\left(x+3\right)}
Faktoriser x^{2}+4x+3. Faktoriser x^{2}+5x+6.
\frac{\left(x-1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Minste felles multiplum av \left(x+1\right)\left(x+3\right) og \left(x+2\right)\left(x+3\right) er \left(x+1\right)\left(x+2\right)\left(x+3\right). Multipliser \frac{x-1}{\left(x+1\right)\left(x+3\right)} ganger \frac{x+2}{x+2}. Multipliser \frac{2}{\left(x+2\right)\left(x+3\right)} ganger \frac{x+1}{x+1}.
\frac{\left(x-1\right)\left(x+2\right)+2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Siden \frac{\left(x-1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)} og \frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)} har samme nevner, kan du legge dem sammen ved å legge sammen tellerne.
\frac{x^{2}+2x-x-2+2x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Utfør multiplikasjonene i \left(x-1\right)\left(x+2\right)+2\left(x+1\right).
\frac{x^{2}+3x}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Kombiner like ledd i x^{2}+2x-x-2+2x+2.
\frac{x\left(x+3\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Faktoriser uttrykkene som ikke allerede er faktorisert i \frac{x^{2}+3x}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}.
\frac{x}{\left(x+1\right)\left(x+2\right)}
Eliminer x+3 i både teller og nevner.
\frac{x}{x^{2}+3x+2}
Utvid \left(x+1\right)\left(x+2\right).