Løs for x
x=-\frac{6\left(3-c\right)}{1+3c-c^{2}}
c\neq \frac{\sqrt{13}+3}{2}\text{ and }c\neq \frac{3-\sqrt{13}}{2}\text{ and }c\neq 3
Løs for c
c=-\frac{\sqrt{13x^{2}+36x+36}-3x+6}{2x}
c=-\frac{-\sqrt{13x^{2}+36x+36}-3x+6}{2x}\text{, }x\neq 0
Graf
Aksje
Kopiert til utklippstavle
x=cx\left(c-3\right)+\left(c-3\right)\times 6
Multipliser begge sider av ligningen med c-3.
x=xc^{2}-3cx+\left(c-3\right)\times 6
Bruk den distributive lov til å multiplisere cx med c-3.
x=xc^{2}-3cx+6c-18
Bruk den distributive lov til å multiplisere c-3 med 6.
x-xc^{2}=-3cx+6c-18
Trekk fra xc^{2} fra begge sider.
x-xc^{2}+3cx=6c-18
Legg til 3cx på begge sider.
-xc^{2}+3cx+x=6c-18
Endre rekkefølgen på leddene.
\left(-c^{2}+3c+1\right)x=6c-18
Kombiner alle ledd som inneholder x.
\left(1+3c-c^{2}\right)x=6c-18
Ligningen er i standardform.
\frac{\left(1+3c-c^{2}\right)x}{1+3c-c^{2}}=\frac{6c-18}{1+3c-c^{2}}
Del begge sidene på -c^{2}+3c+1.
x=\frac{6c-18}{1+3c-c^{2}}
Hvis du deler på -c^{2}+3c+1, gjør du om gangingen med -c^{2}+3c+1.
x=\frac{6\left(c-3\right)}{1+3c-c^{2}}
Del -18+6c på -c^{2}+3c+1.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}