Hopp til hovedinnhold
Evaluer
Tick mark Image
Utvid
Tick mark Image
Graf

Lignende problemer fra nettsøk

Aksje

\frac{x+2}{\left(x-4\right)\left(x+4\right)}+\frac{4}{\left(x-4\right)\left(5x+1\right)}
Faktoriser x^{2}-16. Faktoriser 5x^{2}-19x-4.
\frac{\left(x+2\right)\left(5x+1\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}+\frac{4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Minste felles multiplum av \left(x-4\right)\left(x+4\right) og \left(x-4\right)\left(5x+1\right) er \left(x-4\right)\left(x+4\right)\left(5x+1\right). Multipliser \frac{x+2}{\left(x-4\right)\left(x+4\right)} ganger \frac{5x+1}{5x+1}. Multipliser \frac{4}{\left(x-4\right)\left(5x+1\right)} ganger \frac{x+4}{x+4}.
\frac{\left(x+2\right)\left(5x+1\right)+4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Siden \frac{\left(x+2\right)\left(5x+1\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)} og \frac{4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)} har samme nevner, kan du legge dem sammen ved å legge sammen tellerne.
\frac{5x^{2}+x+10x+2+4x+16}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Utfør multiplikasjonene i \left(x+2\right)\left(5x+1\right)+4\left(x+4\right).
\frac{5x^{2}+15x+18}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Kombiner like ledd i 5x^{2}+x+10x+2+4x+16.
\frac{5x^{2}+15x+18}{5x^{3}+x^{2}-80x-16}
Utvid \left(x-4\right)\left(x+4\right)\left(5x+1\right).
\frac{x+2}{\left(x-4\right)\left(x+4\right)}+\frac{4}{\left(x-4\right)\left(5x+1\right)}
Faktoriser x^{2}-16. Faktoriser 5x^{2}-19x-4.
\frac{\left(x+2\right)\left(5x+1\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}+\frac{4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Minste felles multiplum av \left(x-4\right)\left(x+4\right) og \left(x-4\right)\left(5x+1\right) er \left(x-4\right)\left(x+4\right)\left(5x+1\right). Multipliser \frac{x+2}{\left(x-4\right)\left(x+4\right)} ganger \frac{5x+1}{5x+1}. Multipliser \frac{4}{\left(x-4\right)\left(5x+1\right)} ganger \frac{x+4}{x+4}.
\frac{\left(x+2\right)\left(5x+1\right)+4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Siden \frac{\left(x+2\right)\left(5x+1\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)} og \frac{4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)} har samme nevner, kan du legge dem sammen ved å legge sammen tellerne.
\frac{5x^{2}+x+10x+2+4x+16}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Utfør multiplikasjonene i \left(x+2\right)\left(5x+1\right)+4\left(x+4\right).
\frac{5x^{2}+15x+18}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Kombiner like ledd i 5x^{2}+x+10x+2+4x+16.
\frac{5x^{2}+15x+18}{5x^{3}+x^{2}-80x-16}
Utvid \left(x-4\right)\left(x+4\right)\left(5x+1\right).