Hopp til hovedinnhold
Evaluer
Tick mark Image
Utvid
Tick mark Image
Graf

Lignende problemer fra nettsøk

Aksje

\frac{x+2}{\left(x-1\right)\left(x+5\right)}-\frac{3}{\left(x+1\right)\left(x+5\right)}
Faktoriser x^{2}+4x-5. Faktoriser x^{2}+6x+5.
\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}-\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Minste felles multiplum av \left(x-1\right)\left(x+5\right) og \left(x+1\right)\left(x+5\right) er \left(x-1\right)\left(x+1\right)\left(x+5\right). Multipliser \frac{x+2}{\left(x-1\right)\left(x+5\right)} ganger \frac{x+1}{x+1}. Multipliser \frac{3}{\left(x+1\right)\left(x+5\right)} ganger \frac{x-1}{x-1}.
\frac{\left(x+2\right)\left(x+1\right)-3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Siden \frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} og \frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} har samme nevner, kan du subtrahere dem ved å subtrahere tellerne.
\frac{x^{2}+x+2x+2-3x+3}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Utfør multiplikasjonene i \left(x+2\right)\left(x+1\right)-3\left(x-1\right).
\frac{x^{2}+5}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Kombiner like ledd i x^{2}+x+2x+2-3x+3.
\frac{x^{2}+5}{x^{3}+5x^{2}-x-5}
Utvid \left(x-1\right)\left(x+1\right)\left(x+5\right).
\frac{x+2}{\left(x-1\right)\left(x+5\right)}-\frac{3}{\left(x+1\right)\left(x+5\right)}
Faktoriser x^{2}+4x-5. Faktoriser x^{2}+6x+5.
\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}-\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Minste felles multiplum av \left(x-1\right)\left(x+5\right) og \left(x+1\right)\left(x+5\right) er \left(x-1\right)\left(x+1\right)\left(x+5\right). Multipliser \frac{x+2}{\left(x-1\right)\left(x+5\right)} ganger \frac{x+1}{x+1}. Multipliser \frac{3}{\left(x+1\right)\left(x+5\right)} ganger \frac{x-1}{x-1}.
\frac{\left(x+2\right)\left(x+1\right)-3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Siden \frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} og \frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} har samme nevner, kan du subtrahere dem ved å subtrahere tellerne.
\frac{x^{2}+x+2x+2-3x+3}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Utfør multiplikasjonene i \left(x+2\right)\left(x+1\right)-3\left(x-1\right).
\frac{x^{2}+5}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Kombiner like ledd i x^{2}+x+2x+2-3x+3.
\frac{x^{2}+5}{x^{3}+5x^{2}-x-5}
Utvid \left(x-1\right)\left(x+1\right)\left(x+5\right).