Evaluer
\frac{x^{2}+5}{\left(x+5\right)\left(x^{2}-1\right)}
Utvid
\frac{x^{2}+5}{\left(x+5\right)\left(x^{2}-1\right)}
Graf
Aksje
Kopiert til utklippstavle
\frac{x+2}{\left(x-1\right)\left(x+5\right)}-\frac{3}{\left(x+1\right)\left(x+5\right)}
Faktoriser x^{2}+4x-5. Faktoriser x^{2}+6x+5.
\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}-\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Minste felles multiplum av \left(x-1\right)\left(x+5\right) og \left(x+1\right)\left(x+5\right) er \left(x-1\right)\left(x+1\right)\left(x+5\right). Multipliser \frac{x+2}{\left(x-1\right)\left(x+5\right)} ganger \frac{x+1}{x+1}. Multipliser \frac{3}{\left(x+1\right)\left(x+5\right)} ganger \frac{x-1}{x-1}.
\frac{\left(x+2\right)\left(x+1\right)-3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Siden \frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} og \frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} har samme nevner, kan du subtrahere dem ved å subtrahere tellerne.
\frac{x^{2}+x+2x+2-3x+3}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Utfør multiplikasjonene i \left(x+2\right)\left(x+1\right)-3\left(x-1\right).
\frac{x^{2}+5}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Kombiner like ledd i x^{2}+x+2x+2-3x+3.
\frac{x^{2}+5}{x^{3}+5x^{2}-x-5}
Utvid \left(x-1\right)\left(x+1\right)\left(x+5\right).
\frac{x+2}{\left(x-1\right)\left(x+5\right)}-\frac{3}{\left(x+1\right)\left(x+5\right)}
Faktoriser x^{2}+4x-5. Faktoriser x^{2}+6x+5.
\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}-\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Minste felles multiplum av \left(x-1\right)\left(x+5\right) og \left(x+1\right)\left(x+5\right) er \left(x-1\right)\left(x+1\right)\left(x+5\right). Multipliser \frac{x+2}{\left(x-1\right)\left(x+5\right)} ganger \frac{x+1}{x+1}. Multipliser \frac{3}{\left(x+1\right)\left(x+5\right)} ganger \frac{x-1}{x-1}.
\frac{\left(x+2\right)\left(x+1\right)-3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Siden \frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} og \frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} har samme nevner, kan du subtrahere dem ved å subtrahere tellerne.
\frac{x^{2}+x+2x+2-3x+3}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Utfør multiplikasjonene i \left(x+2\right)\left(x+1\right)-3\left(x-1\right).
\frac{x^{2}+5}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Kombiner like ledd i x^{2}+x+2x+2-3x+3.
\frac{x^{2}+5}{x^{3}+5x^{2}-x-5}
Utvid \left(x-1\right)\left(x+1\right)\left(x+5\right).
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}