Løs for x
x = -\frac{12}{7} = -1\frac{5}{7} \approx -1,714285714
Graf
Aksje
Kopiert til utklippstavle
6\left(x+1\right)+4\left(x+3\right)=3\left(x+2\right)
Multipliser begge sider av formelen med 12, som er den minste fellesnevneren av 2,3,4.
6x+6+4\left(x+3\right)=3\left(x+2\right)
Bruk den distributive lov til å multiplisere 6 med x+1.
6x+6+4x+12=3\left(x+2\right)
Bruk den distributive lov til å multiplisere 4 med x+3.
10x+6+12=3\left(x+2\right)
Kombiner 6x og 4x for å få 10x.
10x+18=3\left(x+2\right)
Legg sammen 6 og 12 for å få 18.
10x+18=3x+6
Bruk den distributive lov til å multiplisere 3 med x+2.
10x+18-3x=6
Trekk fra 3x fra begge sider.
7x+18=6
Kombiner 10x og -3x for å få 7x.
7x=6-18
Trekk fra 18 fra begge sider.
7x=-12
Trekk fra 18 fra 6 for å få -12.
x=\frac{-12}{7}
Del begge sidene på 7.
x=-\frac{12}{7}
Brøken \frac{-12}{7} kan omskrives til -\frac{12}{7} ved å trekke ut det negative fortegnet.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}