Løs for a
\left\{\begin{matrix}a=\frac{\sin(x)}{y}\text{, }&y\neq 0\\a\in \mathrm{R}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\text{ and }y=0\end{matrix}\right,
Aksje
Kopiert til utklippstavle
ay=\sin(x)-\frac{\mathrm{d}}{\mathrm{d}x}(y)
Trekk fra \frac{\mathrm{d}}{\mathrm{d}x}(y) fra begge sider.
ya=\sin(x)
Ligningen er i standardform.
\frac{ya}{y}=\frac{\sin(x)}{y}
Del begge sidene på y.
a=\frac{\sin(x)}{y}
Hvis du deler på y, gjør du om gangingen med y.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}