Løs for a
a=\frac{12}{q^{2}+q+1}
q\neq 1
Løs for q
\left\{\begin{matrix}q=\frac{-\sqrt{-3+\frac{48}{a}}-1}{2}\text{, }&a>0\text{ and }a\leq 16\\q=\frac{\sqrt{-3+\frac{48}{a}}-1}{2}\text{, }&a\neq 4\text{ and }a\leq 16\text{ and }a>0\end{matrix}\right,
Aksje
Kopiert til utklippstavle
a\left(1-q^{3}\right)=12\left(-q+1\right)
Multipliser begge sider av ligningen med -q+1.
a-aq^{3}=12\left(-q+1\right)
Bruk den distributive lov til å multiplisere a med 1-q^{3}.
a-aq^{3}=-12q+12
Bruk den distributive lov til å multiplisere 12 med -q+1.
\left(1-q^{3}\right)a=-12q+12
Kombiner alle ledd som inneholder a.
\left(1-q^{3}\right)a=12-12q
Ligningen er i standardform.
\frac{\left(1-q^{3}\right)a}{1-q^{3}}=\frac{12-12q}{1-q^{3}}
Del begge sidene på 1-q^{3}.
a=\frac{12-12q}{1-q^{3}}
Hvis du deler på 1-q^{3}, gjør du om gangingen med 1-q^{3}.
a=\frac{12}{q^{2}+q+1}
Del -12q+12 på 1-q^{3}.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}