Evaluer
\frac{b}{a^{2}-b^{2}}
Differensier med hensyn til b
\frac{a^{2}+b^{2}}{\left(a^{2}-b^{2}\right)^{2}}
Aksje
Kopiert til utklippstavle
\frac{a}{\left(a+b\right)\left(a-b\right)}-\frac{1}{a+b}
Faktoriser a^{2}-b^{2}.
\frac{a}{\left(a+b\right)\left(a-b\right)}-\frac{a-b}{\left(a+b\right)\left(a-b\right)}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Minste felles multiplum av \left(a+b\right)\left(a-b\right) og a+b er \left(a+b\right)\left(a-b\right). Multipliser \frac{1}{a+b} ganger \frac{a-b}{a-b}.
\frac{a-\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}
Siden \frac{a}{\left(a+b\right)\left(a-b\right)} og \frac{a-b}{\left(a+b\right)\left(a-b\right)} har samme nevner, kan du subtrahere dem ved å subtrahere tellerne.
\frac{a-a+b}{\left(a+b\right)\left(a-b\right)}
Utfør multiplikasjonene i a-\left(a-b\right).
\frac{b}{\left(a+b\right)\left(a-b\right)}
Kombiner like ledd i a-a+b.
\frac{b}{a^{2}-b^{2}}
Utvid \left(a+b\right)\left(a-b\right).
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}