Hopp til hovedinnhold
Løs for x, y
Tick mark Image
Graf

Lignende problemer fra nettsøk

Aksje

y=\frac{6}{4\sqrt{2}+5}
Vurder den andre formelen. Faktoriser 32=4^{2}\times 2. Skriv kvadrat roten av produktet på nytt \sqrt{4^{2}\times 2} som produktet av kvadrat rot \sqrt{4^{2}}\sqrt{2}. Ta kvadratroten av 4^{2}.
y=\frac{6\left(4\sqrt{2}-5\right)}{\left(4\sqrt{2}+5\right)\left(4\sqrt{2}-5\right)}
Gjør nevneren til \frac{6}{4\sqrt{2}+5} til et rasjonalt tall ved å multiplisere telleren og nevneren med 4\sqrt{2}-5.
y=\frac{6\left(4\sqrt{2}-5\right)}{\left(4\sqrt{2}\right)^{2}-5^{2}}
Vurder \left(4\sqrt{2}+5\right)\left(4\sqrt{2}-5\right). Multiplikasjon kan forvandles til differansen av kvadratene ved hjelp av regelen: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
y=\frac{6\left(4\sqrt{2}-5\right)}{4^{2}\left(\sqrt{2}\right)^{2}-5^{2}}
Utvid \left(4\sqrt{2}\right)^{2}.
y=\frac{6\left(4\sqrt{2}-5\right)}{16\left(\sqrt{2}\right)^{2}-5^{2}}
Regn ut 4 opphøyd i 2 og få 16.
y=\frac{6\left(4\sqrt{2}-5\right)}{16\times 2-5^{2}}
Kvadratrota av \sqrt{2} er 2.
y=\frac{6\left(4\sqrt{2}-5\right)}{32-5^{2}}
Multipliser 16 med 2 for å få 32.
y=\frac{6\left(4\sqrt{2}-5\right)}{32-25}
Regn ut 5 opphøyd i 2 og få 25.
y=\frac{6\left(4\sqrt{2}-5\right)}{7}
Trekk fra 25 fra 32 for å få 7.
y=\frac{24\sqrt{2}-30}{7}
Bruk den distributive lov til å multiplisere 6 med 4\sqrt{2}-5.
y=\frac{24}{7}\sqrt{2}-\frac{30}{7}
Del hvert ledd av 24\sqrt{2}-30 på 7 for å få \frac{24}{7}\sqrt{2}-\frac{30}{7}.
x=5+2\sqrt{6} y=\frac{24}{7}\sqrt{2}-\frac{30}{7}
Systemet er nå løst.