Hopp til hovedinnhold
Evaluer
Tick mark Image
Differensier med hensyn til p
Tick mark Image

Lignende problemer fra nettsøk

Aksje

\frac{5q^{2}p^{3}}{5qp^{2}\left(9p^{2}-7q^{2}\right)}
Faktoriser uttrykkene som ikke allerede er faktorisert.
\frac{pq}{9p^{2}-7q^{2}}
Eliminer 5qp^{2} i både teller og nevner.
\frac{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)\frac{\mathrm{d}}{\mathrm{d}p}(5q^{2}p^{3})-5q^{2}p^{3}\frac{\mathrm{d}}{\mathrm{d}p}(45qp^{4}+\left(-35q^{3}\right)p^{2})}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
For to differensierbare funksjoner er den deriverte av kvotienten av to funksjoner nevneren multiplisert med den deriverte av telleren minus telleren multiplisert med den deriverte av nevneren, delt på nevneren i andre.
\frac{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)\times 3\times 5q^{2}p^{3-1}-5q^{2}p^{3}\left(4\times 45qp^{4-1}+2\left(-35q^{3}\right)p^{2-1}\right)}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
Den deriverte av et polynom er summen av de deriverte av leddene i uttrykket. Den deriverte av et konstantledd er 0. Den deriverte av ax^{n} er nax^{n-1}.
\frac{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)\times 15q^{2}p^{2}-5q^{2}p^{3}\left(180qp^{3}+\left(-70q^{3}\right)p^{1}\right)}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
Forenkle.
\frac{45qp^{4}\times 15q^{2}p^{2}+\left(-35q^{3}\right)p^{2}\times 15q^{2}p^{2}-5q^{2}p^{3}\left(180qp^{3}+\left(-70q^{3}\right)p^{1}\right)}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
Multipliser 45qp^{4}+\left(-35q^{3}\right)p^{2} ganger 15q^{2}p^{2}.
\frac{45qp^{4}\times 15q^{2}p^{2}+\left(-35q^{3}\right)p^{2}\times 15q^{2}p^{2}-\left(5q^{2}p^{3}\times 180qp^{3}+5q^{2}p^{3}\left(-70q^{3}\right)p^{1}\right)}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
Multipliser 5q^{2}p^{3} ganger 180qp^{3}+\left(-70q^{3}\right)p^{1}.
\frac{45q\times 15q^{2}p^{4+2}+\left(-35q^{3}\right)\times 15q^{2}p^{2+2}-\left(5q^{2}\times 180qp^{3+3}+5q^{2}\left(-70q^{3}\right)p^{3+1}\right)}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
Hvis du vil multiplisere potensen av samme grunntall, kan du legge til eksponentene deres.
\frac{675q^{3}p^{6}+\left(-525q^{5}\right)p^{4}-\left(900q^{3}p^{6}+\left(-350q^{5}\right)p^{4}\right)}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
Forenkle.
\frac{\left(-225q^{3}\right)p^{6}+\left(-175q^{5}\right)p^{4}}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
Kombiner like ledd.